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ABSTRACT

Complex system software allows a variety of execution cior
on system configurations and workload properties. Thispeype
plores a principled use akference executiorsthose of similar
execution conditions from the target—to help identify tlyenp-
toms and causes of performance anomalies. First, to igentif
anomaly symptoms, we construct change profiles that pri@bi
cally characterize expected performance deviations lestiearget
and reference executions. By synthesizing several sipaflameter
change profiles, we can scalably identify anomalous reteréo-
target changes in a complex system with multiple executian p
rameters. Second, to narrow the scope of anomaly root caase a
ysis, we filter anomaly-related low-level system metricdtase
that manifest very differently between target and refeeeexe-
cutions. Our anomaly identification approach requireseliex-
pert knowledge or detailed models on system internals and co
sequently it can be easily deployed. Using empirical casdies
on the Linux 1/0 subsystem and a J2EE-based distributech@nli
service, we demonstrate our approach’s effectiveneseittifging
performance anomalies over a wide range of execution dondlit
as well as multiple system software versions. In particul@rdis-
covered five previously unknown performance anomaly caimses
the Linux 2.6.23 kernel. Additionally, our preliminary éts sug-
gest that online anomaly detection and system reconfiguratay
help evade performance anomalies in complex online systems
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1. INTRODUCTION

Large system software such as operating systems and disttib
system middleware are complex in terms of their implemémat
their supported configuration settings, and their wide irsgg/ork-
loads. Under certain execution conditions, these systeaysde-
liver below-expectatiomnomalousperformance. Besides causing
performance degradation, such performance anomaliescalse
promise the predictability of system behaviors [11, 15,18],
which is important for automatic system management.

Compared to program crashes and correctness violatiorferpe
mance anomalies are more difficult to identify becausenal per-
formance behaviorare not always easily known or even clearly de-
fined. Further, performance anomalies typically relatdgbtevel
system semantics and they do not possess common sourte-leve
patterns such as accessing invalid pointers. Despite pidad
anecdotal observations of performance problems, relptigee of
them are clearly identified and understood. For instancesxaen-
ined CLOSED e, resolved and corrected) bugs concerning Linux
2.4/2.6 10/storage, file system, and memory managementein th
Linux bug tracking system [9]. Among 219 reported bugs, dhly
were primarily performance-related (about 4%). Here, weerde
mine a bug to be primarily performance-related if it causgsi
icant performance degradation but it does not cause anyrewto
behaviors like system crashes or deadlocks.

This paper explores principled, scalable techniques amgusif-
erence executions for performance anomaly analysis. Aeaete
execution is very similar to the targeted anomalous exeguiti
terms of system software, configuration settings, and wwauxkl
properties (which, we collectively call execution conalits). Like
a literary reference, it serves as a basis of comparisonhitlps
understand the commonality and uniqueness of the target.

References can assist in identifying performance anonyaiyps
toms. We say that a target execution exhibits the symptorapef-
formance anomaly if its performance is abnormally lowenttizat
of a reference—e., compared to the expected performance devia-
tion between them. Our approach utilizenge profileshat prob-
abilistically characterize expected performance demegibetween
target and reference executions. In a complex system witli-mu
ple execution parameters, we first use sampling to derivglesin
parameter change profiles for a target and its referencedtfiat
fer only slightly in execution condition. By synthesizinguhi-
ple single-parameter change profiles using a generallyicatybé
bounding analysis, we can scalably identify anomalouseefse-
to-target changes over wide ranges of execution conditions

Identified reference-target anomaly symptoms can servheas t
basis of root cause analysis. In particular, referenceshmefythe
analysis by filtering anomaly-related system metrics frbmlarge
set of collectible metrics in today’s systems. Our apprdauaids
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Figure 1: An example of system version evolution anomaly on
SPECweh99 with an 1/0-bound workload (19.5 GB total data
size on a machine with 2GB memory). The I/O throughput
measures the speed of data access at the server applicatiend|
(Apache 2.0.44). All Linux kernel versions are configured vith
the anti ci pat ory I/O scheduler.

2.6.23

on the intuition that system metrics that manifest veryedéhtly
between the target anomalous execution and its normalerefer
are likely related to the performance anomaly. Furtherapamaly
identification approach can assist the management of canople
line systems. For instance, the online detection of anosaiyp-
toms coupled with adjustments of anomaly-inducing system c
figurations may help improve the performance (or evade perfo
mance anomalies).

Our reference-driven performance anomaly identificatien r
quires little knowledge or detailed models on internal eysde-
sign and implementation. This allows easy deployment onpbexn
systems supporting a variety of configuration settings amdvad
conditions. We are able to apply it on two large softwareeyst
the Linux I/O subsystem and the JBoss J2EE distributed @pli
tion server. Our empirical studies uncovered previouslynomwn
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Figure 2: An example of workload condition change anomaly
on an 1/0O microbenchmark that sequentially reads 256 KBytes
from random locations in randomly chosen files of 4 MBytes
large. The workload is I/O-bound (19.5 GB total data size on
a machine with 2 GB memory) and the experiments run on the
Linux 2.6.23 kernel configured with the dead! i ne 1/0O sched-

uler. We control the number of simultaneously running bench

mark instances to adjust the I/O concurrency levels.

executionsI” and R: if T delivers much worse performance than
R against the expected performance deviation between tiem, t
you identify the target executidfi as anomalous in relation to the
reference executioR.

We provide two illustrating examples. Figure 1 shows the per
formance of the SPECweb99 benchmark with an 1/0-bound work-
load. The I/O throughput over multiple Linux kernel versan-
dicates anomalous performance degradation (around 2084) fr
Linux 2.6.19 to Linux 2.6.23. In this example, Linux 2.6.28
leased in October 2007) is anomalous in relation to any of the
three earlier kernel versions (released in November 20@6eM-
ber 2004, and February 2004, respectively) as a referemcan-|

anomaly symptoms and causes over wide ranges of system-execuother example, Figure 2 shows the 1/O throughput of a sim@e |

tion conditions (eight execution parameters for Linux aimkrpa-
rameters for JBoss) as well as multiple system softwareoress

2. ANOMALY SYMPTOM
TION

IDENTIFICA-

microbenchmark. The measured throughput at different 8@ c
currency levels indicates a suspicious performance dropesan
the concurrency levels of one and two. In this case, the ¢ixgcu
at the concurrency of two is suspected to be anomalous iticela
to the serial execution.

It is important to point out that the identified anomalies e t

A performance anomaly arises when the system performance be above two examples are not just due to large performancadagr

havior deviates from the expectation. Performance expent

tions between the target and reference, but that such degas

can be made in different ways, such as design-driven models, are against certain expectation. In the first example of ystem

service-level agreements, or programmer specifications. ab-
jective is to derive performance expectations that matgh-tevel
design principles and that can be intuitively interpretéebr in-
stance, the expected performance of an 1/O scheduler idrthat
tended by the high-level scheduling algoritheng, Cyclic-SCAN
or anticipatory scheduling [5]). Its behavioral changedarmdif-
ferent execution conditions can be intuitively explainedading
to the scheduling algorithm.

Intuitive interpretability is important for human undexsting
of the expected performance behavior and it also helps atalid
the derived expectation. With design-driven expectatianyg per-
formance anomaly indicates an implementation deviatiomfthe
high-level design. Such deviation may represent uninteati er-
rors, but sometimes the implementation intentionally ds from
the design for simplification or due to a partially benefi@ati-
mization that degrades performance in some cases.

2.1 Motivating Examples and Our Approach

The high-level guidance of reference-driven anomaly sympt
identification can be explained in the following way. Giverot

evolution anomaly, the obvious expectation is that a system
sion upgrade should not lead to significant performanceadizgr
tion. In the second example of the workload adjustment ahgma
the somewhat less obvious expectation is that the increfad® o
concurrency should not cause significant performance datjcen.

So how to systematically derive these expectations? Our ap-
proach is to probabilistically infer expected performadeeiations
due to changing system execution conditions through randesa:
surements on the real system. The assumption is that copmmonl
observed performance behaviors in real systems likely hfzgh-
level design principles and often they can be intuitivelplained.

We define theechange profilefor an execution condition change
as the probabilistic distribution of resulted performadegiations.
Different performance deviation metrics can be employadlie
change profile representation. Here we choose one with deod i
lustrating effects. From throughput measurements at adidnev
conditions (oid andtnew), We define:

tnew — told (1)

deviatior(told, t =——
I’( old, new) maX{tnew, told}
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togram) for OS version increase from
Linux 2.6.3, 2.6.10, or 2.6.19 to 2.6.23.

togram) for workload

This performance deviation metric has a bounded range in
[—1.0, 1.0]. Given deviatiorft,,t2) = —deviatior(tz, ¢1), it also
exhibits symmetry at opposite change directions. Thisnallas

to simply revolve the distribution around the origin poirtten the
change direction is reversed.

As an example, we can derive the change profile for OS kernel
version increase by sampling the resulted performanceatiens
under many randomly chosen execution conditions (inclygis-
tem configuration parameters and workload properties,ritest
in Section 4.1). Figure 3 illustrates the results for migigtfrom
Linux 2.6.3, 2.6.10, or 2.6.19, to Linux 2.6.23. The resuts
idate the intuitive expectation that large performanceraidation
is uncommon after system version increase but large pedfiocen
improvement is quite possible.

Similarly, Figure 4 illustrates the change profile for therkoad
concurrency increase by a factor of four (the concurrentynised
so memory thrashing [7] does not occur). Results suggesttha
workload concurrency increase tends to improve the 1/Oulijine
put slightly. The intuition is that at a higher concurrentte 1/0
scheduler can choose from more concurrent requests areddter
achieve better seek reduction.

Given a probabilistic distribution of expected performaudevi-
ations with the probability density function af(-). We can then
quantify the anomaly of an observed performance degradéfjo
from a reference execution to the target. Specifically, weths
one-tailed p-value in statistics:

pval(d) = /j

It represents the cumulative probability for a random okestEon
(drawn from the distribution with density function(-)) to be no
more thand. Intuitively, it is the probability to observe a perfor-
mance degradation at least as extreme.a®A lower p-value is
more anomalous. The p-value concept makes no assumptitie on t
underlying distributionr, making it easily applicable to our case.

m(z) dx.

1.0

@)

2.2 Scalable Anomaly Quantification

In the previous subsection, we use sampling to constructgeha
profiles for single-parameter adjustments (system versidrig-
ure 3 or workload concurrency in Figure 4). They are able tp he
quantify the anomaly (in p-value) between atarget and feseace
execution that differ only in one condition parameter. A q@bex
system, however, may have many execution condition passet
including multiple configurable parameters in the systeftwsre
and various properties for the hosted workloads. One mayngpit
to directly construct change profiles for multi-parametference-

.0

crease by a factor of four.

Figure 5: In a multi-parameter ex-
ecution condition space, the condi-
tion change from reference to target
is a combination of a single-parameter
change on Y and a single-parameter
change on X.
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to-target condition changes.(, differing in workload concurrency
as well as the operating system 1/O scheduler). Howevergthe
would be too many multi-parameter combinations for a compre
hensive construction.

We consider each execution condition as a single point in the
multi-dimensional space where each system configuratioanpa
eter and workload property represents a dimension. Figupm®-b
vides an illustration of thexecution condition spacelhe multi-
parameter change between two execution conditions cantbe co
sidered as a series of single-parameter changes. To adtel«e
ability, we directly construct only single-parameter charpro-
files and then analytically synthesize them to identify aaem
lous performance deviations over multi-parameter exenuton-
dition changes. The intuition is that the performance ratio
ter a multi-parameter change is the product of the ratios wf m
tiple single-parameter changes. The challenge, howesehe
non-deterministic (or probabilistic) nature of our charmyefiles.
Below we first describe a convolution-like synthesis thatuases
independent performance deviations due to different param
changes. We then present a generally applicable approaminto
servatively bound the quantified anomaly for low false pesd.

Our change profile representation was defined on the perfor-
mance deviation metric (described in Equation 1) becaupeoit
vides good illustrating effects (bounded range and symnagtop-
posite change directions). However, for the simplicity aithe-
matical formulations in this section, we introduce a newng®a
profile representation on the metric of performance ratibe Ta-
tio is defined a%“ wheretoq andtnew are the system throughput
measures before and after the execution condition chaspeace
tively. Specifically, theperformance ratio change profilfor an
execution condition change is the probabilistic distiidtof re-
sulted performance change ratios. Note that the two charofigep
representations can be easily converted to each other. Saneu
alytical results on performance ratio change profiles caadsdly
applied to the original change profile representation.

We introduce some notations. Let the target and reference ex
ecutions differ on multiple condition parametefs;, p2, - - -, Pn-
The single-parameter performance ratio change profilg; dras a
known probability density function of,, (-). Let pval, () be its

one-tailed p-value function, or pyal(s) = fo‘s mp, (z) dz.

Convolutional Synthesis of Independent Parameters.
By assuming the independence across multiple parametegeba

we can probabilistically assemble the multi-parametenghapro-

file from multiple single-parameter profiles. In particulaglow we
derive a two-parametep{ andp2) change profile using a variant



of the convolution operator:

Founa ) = [ 7 (2) (L) da ©

0
Change profiles adjusting more than two parameters can heder
by repeatedly applying the above operator.
With the multi-parameter change profile, we can easily gfyant
the p-value anomaly of any observed performance degradatio

Bounding Analysis with General Applicabilitynfor-
tunately, the assumption on independent performance titavia
across multiple parameter changes may not be true in peaciie
one example, different application I/O access patterns sy to
varying performance effects of aggressive 1/0O prefetching

Here we introduce a more generally applicable problem model
Given the performance degradation (in the ra)ifrom a reference
execution to the target, our p-value anomaly is the protphiid
observe a performance degradation at least as extrenie ¥
consider a randomly observed multi-parameter performaate
change as an aggregate of multiple single-parameter change
Z2, -+, Tn (Wherez; is drawn from the density function,, (-)).
We have:

pval, ., (8) = Prob [H zi < 5} : @)
=1
Without any knowledge of independence or correlation &ros
different single-parameter performance changes:(s), it is gen-

erally impossible to quantify the exact p-value anomaly qu&

optimization goal together into the Lagrangian function:

A(:fh f27 e 71;”7 )‘) = Z pvalpi (:fl) +A- (H "fz - 6) (7)
i=1 =1
The critical values of\ are achieved only when its gradient is zero.
In other words, for eack (1 < k < n), we have:
opval ()
oA _ Opvay, (k) . 65 = 1y (1) + A2 = 0,
0%, 0%, _ _ Tk
i=1—mn, i#k
®

Therefore, we know that the optimal solution must satisfy:

9)

Combining Condition 9 with the constraif{_, #; = ¢, we can
compute a numerical solution using the iterative secanhatka
variant of the Newton’s method).

In practice, the calculation of the above optimal soluti@a r
quires accurate distribution density values (-)’s, which places
a high burden on the construction of single-parameter ahang
profiles. As a simpler alternative, one can use a Monte Carlo
approximation—to sample a large number of randomly chostn s
of &;’s (where] [}, ©; = d) and pick the one producing the mini-
mal 3", pval, (7).

By providing a conservative anomaly estimation withoutuieq
ing the independent parameter assumption, our boundingsima
yields high confidence in identified anomaly symptoms (lolsda
positives). However, it may allow some anomalous referg¢aoget
pairs to escape identification. This is acceptable if oud goto

Ty - T, (T1) = X2 - Wp, (T2) = -+ = T - T, (Tn).

tion 4. Here we derive a p-value upperbound which serves as aidentify some but not all anomaly symptoms in the system.

conservative anomaly estimation. We begin by introdudiegfol-
lowing lemma.

LEMMA 1. For any set of single-parameter performance ratio
changesri, s, - - -, 2, (all greater than0) that exactly aggregate
to the overall change of (in other words [}, #; = §), we can
show that pvgJ, .., (0) < >°7, pval, ().

Proof: For any set ofc1, x2, - - -, x, Wherez; > &; for all i’s, we

know that[ [}, z; > [[;, i = 6. Conversely, iff [, z; <4,
thenz; < #; holds for at least ongé Therefore:

pval, .., (8) = Prob [H 2 <6
i=1

< Prob[(z1 < #y)or -+ or (zn < 25)]

=1

= pval, (). [ ]
i=1

2.3 Additional Discussions

We may need to construct multiple single-parameter charme p
files on one parameter due to multiple possible change-froth a
change-to parameter settings. For categorical parameitins
more than two settings (like the Linux 1/O scheduler wiidop,
deadl i ne, andant i ci pat ory settings), we would need to con-
struct multiple change profiles (one for each two-setting) p&or
quantitative parameters such as the workload concurreremay
need to construct change profiles for different concurready
justment magnitude. Alternatively, to save the overheadliof
rect construction, we may only directly construct change- pr
files for small-magnitude setting changes. We then consider
large-magnitude setting change as an aggregate of mustipddl-
magnitude changes and use our multi-step synthesis inoBez2
to derive anomaly quantification. Note, again, that our gahe
applicable bounding analysis makes no assumption on how the
overall performance deviation is distributed across mldtsmall-
magnitude parameter changes.

The p-value calculation provides a way to quantitativelgkra
suspected anomaly symptoms. However, there is a lack of well
founded threshold below which a p-value would indicate & tru

Lemma 1 can derive a p-value upperbound anomaly for any set gnomaly. In practice, 0.05 is a commonly used thresholdge si

of single-parameter performance ratio changes that gxagtre-
gate to the overall change &f Since a tighter bound is more desir-
able, we want to identify the one yielding the smallest uppand.
Formally, our problem is to:

Minimizez pval, (i), subjectto H:cz =4.

i=1 i=1

(6)

The optimal solution to the above problem can be derivedgusin
Lagrange multipliers as follows. As there is just a singlestmaint,
we use only one multiplied to combine the constraint and the

nify statistical significance, which can be traced to Fishearly
work on agriculture experiments [3].

3. UTILIZATIONS

Our approach identifies anomalous reference-to-targdormper
mance degradations in a complex system with a large executio
condition space. This is an otherwise challenging task due t
the difficulty in constructing comprehensive, accuratdqgrerance
models for complex systems [11, 15, 17, 18]. Our anomaly symp
tom identification can be utilized in a number of ways. We can



measure the system performance at some sample executien cor
ditions (with good coverage of the whole space) and use tleem t
serve as references to each other for identifying anomadaas
cution conditions. Anomalous symptoms can further servithas
basis for the root cause analysis. During online operatitwesper-
formance anomaly detection on the current execution ciamdiain

also enable more dependable system management.

3.1 Anomaly Cause Analysis

Given a pair of reference-target executions with anomapmuis
formance degradation, we want to discover the anomaly cause
in the system implementation. Corrections to anomaly cause
would improve the system performance, and more importantly
they would maintain predictable performance behaviorpast for
the system. The root cause discovery also helps validatehba
anomaly symptom identifications are corredtesthey indeed cor-
respond to implementation deviations from the high-lewesign.

The anomaly cause analysis is challenging due to the impleme
tation complexity in large systems. Fortunately, therenisabun-
dance of collectible metrics in today’s systems and loveleys-
tem metrics may shed lights on internal system behaviorscigp
cally for the case of the Linux I/O subsystem, example meirie
clude the 1/0 request granularity and workload concurreatayif-
ferent levels of the system, the frequency of various syseents
(like system calls), as well as the latency of many concesystem
functions. It is likely that some collected metrics are tedbto the
anomaly cause. Such anomaly-related metrics, if discdyenay
help significantly narrow the scope of root cause analysis.

Target execution Reference execution
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Figure 6: A real example of metric manifestations for target
and reference executions. The concerned metric is the gran-
ularity of read I/0O requests at the device level (sent from fié
system to the SCSI device driver). Probabilistic distributons
are computed from over 10,000 request size measurements in
each execution.

from an anomaly-related system metric. In some cases, acmetr
to-anomaly correlation does not necessarily mean caysalide-
pendenceif(e., the differing metric manifestation may not directly
cause the performance anomaly). We acknowledge that the fina
metric screening and anomaly-cause reasoning still recpigmifi-

cant human efforts. However, our reference-driven metitierfing

can significantly narrow the scope of such manual work.

Our method can discover anomaly-related metrics on ex@tuti
states €.g, the number of outstanding block-level 1/0 requests) as
well as control flows €.g, the frequency of reaching a particular
1/0 exception condition). More precise control flow tradkifor

A scalable anomaly cause analysis needs to prune the vast ma@nomaly analysis can be done at function or basic blockdesath

jority of anomaly-unrelated metrics so that the manual ération
is only required in a very limited scope. Our approach isetriby
the intuition that system metrics that do not differ sigrfidy be-
tween the target anomalous execution and its normal referare
not likely related to the performance anomaly. Convergblgse
metrics with very different anomaly-reference manifasta may
be anomaly-related. This would be particularly so if thgéamand
reference execution conditions are very alike (or if a vayent
past version serves as the reference to a target systeranjersi

Typically, a performance-oriented system metric manfest a
set of varying quantitative sample measurements in a syskem
cution. In general, we represent the manifestation of egstes
metric as a probability distribution of measured sampleesl We
then quantify how each metric’'s manifestation differs bestw the
target anomalous execution and its normal reference. Axan e
ample, Figure 6 illustrates the probabilistic manifestagi of one
metric in target and reference executions.

Motivated by Joukowet al’s differencing of latency distribu-
tions [6], we utilize the earth mover’s distance [14] as tifietence
measure between two distributions. Consider the proces®uf
ing some probability density mass of one distribution’shyzdaility
density plot to become another distribution’s probabitignsity
plot, the earth mover’s distance indicates the minimum arhofi
work (probability density mass times the moving distaneeired
for such move. Note that different metrics may have differenits
of measure or scales. To allow their difference measureg ti-b
rectly comparable, we scale all sample values for each engdri
that the larger of the two distribution means equals 1.0.

The result of our approach is a list of system metrics ranked o
their manifestation differences between the target areteate ex-
ecutions. Although a large difference indicates a highlilikeod
that the metric is anomaly-related, the difference may hisdue
to the natural variation between reference and target ¢éxesu
Further, it may not be trivial to pinpoint the exact anomadyise

as in Triage [20] and DARC [19]. Note that our analysis ta(get
ecution of the full software system) is significantly broatiean
that of Triage (execution of an application program) and QAR
(latency peak of a particular system operation). A good aVap-
proach may be to first narrow down the analysis target usimg ou
reference-driven metric filtering, and then apply more {z&con-
trol flow tracking to further reduce the human analysis efor

3.2 Online Anomaly Detection and System
Management

It is hard to detect anomaly symptoms in complex systems.
The dynamic and wide ranging workloads of such systems can
mask small performance degradations. Further, such sgdtame
many complicated system parameters with hard-to-undetsiar-
formance effects. Our reference-driven anomaly identiboais
useful in this scenario, because it uses easily-built chgmp-
files (rather than expert knowledge or detailed models otesys
internals) to capture design-intended performance. Eyrthur ap-
proach can be applied online to detect anomalies as theyehapp

Our reference-driven approach to online anomaly detedten
gins with the offline construction of single-parameter depro-
files. Then during online execution, we monitor performance
workload conditions, and system configurations. We pecalt)i
compile monitoring data for the most recent executed candit
This condition serves as the target in our anomaly identifina
For references, we use conditions encountered in previoliseo
executions or during the change profile construction.

Online anomaly detection has practical uses in system neanag
ment. It can alert system administrators of costly perfarcea
degradations. With online anomaly detection, managemaftt s
ware may automatically increase logging activity to suppater
analysis of anomaly root causes. And in autonomic systemes, t
management software may avoid anomalous execution consliti
by reconfiguring the system to normal alternatives.



4. CASE STUDY ON LINUX I/0O SYSTEM

In this section, we explore performance anomalies in then.in
/0 subsystem. We consider an execution condition spade tha
spans eight system parameters and four Linux versions. CEsis
study demonstrates our reference-driven anomaly sympdentit
fication and root cause analysis on a real system impleni@mtat

4.1 Empirical Setup

We empirically examined performance anomalies over a multi
dimensional execution condition space, including theofeihg
workload properties related to 1/O system performance:

1. Number of concurrent 1/O operationg, 2, 4, 8, 16, 32, 64,

128, or 256.

Average length of sequential access streadsKB, 128 KB,

256 KB, 512 KB, 1 MB, or 2 MB.

Portions of sequential streams accessed without inteithgav

I/O from other streams 16 KB, 32KB, 64KB,---, up to

the length of sequential access streams. We also call this

parametesequential access run length

4. Whether each stream start at file beginnitigie or false.

5. Average application thinktime per megabyte of data access
0ms, 1 ms, 2ms, 4ms, or 8ms.

2.

3.

To create workloads with arbitrary properties, we devetbpa
adjustable microbenchmark that can exhibit any combinatib
workload property settings. It reads randomly selected filem
a dataset of 5,000 4 MBytes files (19.5 GB in total).

Further in the execution condition space, we consideregethr
system configuration parameters related to 1/0O system iperfo
mance:

6. File system cachingenabled or disabled.

7. File system prefetching depti64 KB, 128 KB, 256 KB, or
512 KB.

8. Linux I/O schedulingnoop, deadline, or anticipatory.

We augmented the operating system to allow these diffeefig:
urations. The prefetching depth and I/O scheduler can hested)
by setting appropriate operating system configuratioratses. To
disable the file system caching, one can discard the caclgss pa
encountered during I/O processing.

We experimented with four Linux versions released in thenspa
of about four years (2.6.23, October 2007; 2.6.19, Nover2bee6;
2.6.10, December 2004; and 2.6.3, February 2004). Our measu
ments used a server equipped with dual 2.0 GHz Xeon processor
and 2 GB memory. The data is hosted on an IBM 10 KRPM SCSI
drive with raw seek time in the range of 1.3-9.5 millisecofuis-
pending on the seek distance) and raw sequential transéeira
the range of 33.8-66.0 MBytes/second (depending on thezdisi
where the data is located).

4.2 Anomaly Symptom Identification

As the basis for our anomaly symptom identification, we aeat
single-parameter change profiles for all system parameteaish
probabilistically characterizes the expected perforreateviations
when a single execution condition parameter changes (vetiile
other parameter settings remain unaltered). We produeeprtb-
abilistic distribution by sampling the resulted perforroardevi-
ations under at least 288 randomly chosen settings of other p
rameters. At each execution condition, we measured the sys-
tem throughput by averaging the results of three 100-secomsl
Our measurements are stable. Excluding the very low-thimpuig
(2 MBytes/second or less) execution conditions, the stahdevi-
ation of every condition’s three-run throughputs is lessth0% of
the corresponding average.

Figure 7 shows some produced single-parameter changeegrofil
on execution condition adjustments. For quantitative ipatars
like prefetching depth, workload concurrency, and the tleagf
sequential access stream/run, the provided change praféefor
parameter value increases by a factor of four. Followingliszus-
sion at Section 2.3, our anomaly symptom identification apgh
considers larger-magnitude setting changes on these paemnas
an aggregate of multiple small-magnitude changes. Figste®is
change profiles for the Linux kernel version evolution.

A key advantage of our approach is that the probabilistiaid-
rived change profiles (in Figures 7 and 8) match high-leve} sy
tem design principles and often they can be intuitivelyripteted.
We provided such understanding for two single-parametangé
profiles in Section 2.1. Here we briefly explain several ather
Caching in memory improves the system performance, whae th
specific improvement depends largely on the data-to-menwry
tio (19.5 GB data on 2 GB memory for our case). The anticigator
scheduler may improve the concurrent I/O performance iesas
of deceptive idleness [5]. With respect to sequential |/Ceases,
it is intuitive that workloads with more sequential pattetand to
deliver higher 1/O throughput. More aggressive prefetghirould
take advantage of sequential accesses to deliver betfermpeance.

We identified symptoms of execution condition change anoma-
lies and system version evolution anomalies separatelgxptore
execution condition change anomalies, we chose a numbanof s
ple conditions from the execution condition space. We meaku
1/0 throughput at all chosen conditions and used them aserates
to each other for identifying anomalous execution condgioFor
reference-to-target execution condition changes thatatréirectly
characterized by existing single-parameter change psofile used
our generally applicable bounding analysis in Section 8.prb-
duce anomaly measures. To explore system evolution anesnali
we measured /O throughput of multiple system versions tver
same set of sample execution conditions. We then used darearl
system version as the reference to identify performancenahyo
symptoms in the more recent system version.

We explored execution condition change anomalies on both
Linux 2.6.23 and Linux 2.6.10. As multiple nearby sampledazx
tion conditions may serve as references for a target comditve
chose the one yielding the smallest p-value (or the highesnaly
likelihood) to be its reference. The corresponding p-vatuthe
anomaly measure for the target condition. We also examined e
lution anomalies between the two system versions. As irtpudar
studies, we chose 300 sample conditions from the executiodi
tion space in a uniformly random fashion and measured thersys
throughput at these 300 conditions for both kernel versions

Validation. We validated whether the identified anomaly symp-
toms (reference-target pairs with anomalous performamcgad
dation) indeed correspond to implementation deviationmfthe
high-level design. As discussed in Section 2.3, we focusethe
symptoms with p-value measure of 0.05 or less. This indécate
5%-or-less probability for observing performance degtiada (in

the real system) at least as extreme as these symptomdy,|fieal
each symptom, we need to find the real cause for the perfoenanc
difference first and then judge whether it corresponds tgardere
from the system design intention. In particular, our valiata uti-
lized the discovered anomaly causes presented later iro8&c8.

If an anomaly symptom can be explained by a valid anomalye&aus
we consider it a true anomaly. On the other hand, a symptom tha
cannot be explained by any known anomaly cause is not neeessa
ily a false positive—it may be due to a not-yet-discoveredraaly
cause. As an indication of high confidence, all our suspefetied
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Figure 7: Single-parameter change profiles (in histogramsfor adjustments of various execution condition parameters The perfor-
mance (I/O throughput) deviation is defined earlier in Equaion 1.

Kernel version: 2.6.3 —> 2.6.23 Kernel version: 2.6.10 > 2.6.23 Kernel version 2.6.19 —> 2.6.23 Aggregate kernel version increase
0.5
= 2 = 2
3 3 = =
[ [} [ I}
Q Qo Q Qo
< <l < <}
a a a a
0 0 0 0
-1.0 -05 0.0 0.5 1.0 -1.0 -05 0.0 0.5 1.0 -1.0 -05 0.0 0.5 1.0 -1.0 -05 0.0 0.5 1.0
Perf. deviation: (new-old)/max Perf. deviation: (new-old)/max Perf. deviation: (new-old)/max Perf. deviation: (new-old)/max

Figure 8: Single-parameter change profiles (in histogramsfor OS kernel version increases.

positives can be explained by some normal system design-inte low false positives in identified anomaly symptoms. We coraga

tions. We call thenprobable false positives this approach to the convolutional synthesis that assunuepéen-
We provide the validation results to demonstrate the lowefal  dent parameters (also presented in Section 2.2). We fuctivar
positive rate of our approach. Below are results for theethper- pared against another approach, catled-difference that quanti-
formance anomaly explorations. The cited anomaly causéatsn fies anomalous reference-to-target performance degoadaiased
point to detailed descriptions in Section 4.3: on the raw degradation ratio. To minimize false positivesaiv-

) » ) difference, we only consider references that are very aintil the
e We identified 35 top anomaly symptoms on Linux 2.6.10 ex- target (differing on no more than two execution conditionapae-
ecution condition changes. Within these, 32 are due to cause ers with small-magnitude differences on quantitativeapzaters).
#1, one is due to cause #3, and one is due to cause #6. The Figyre 9 shows the anomaly symptom identification results in
remaining one is a probable false positive—the reference-t  the Linux 2.6.23 execution condition exploration. Restsits-
target performance degradation can be explained by the an-gest that the convolutional synthesis approach may igentifre
ticipatory scheduler (of the reference execution)'s efgc  anomalies than the bounding analysis, but it does so at Steta
high throughput for concurrent 1/O. . B much higher false positive ratio. This is the result of ptismver-
e The exploration on Linux 2.6.23 execution condition  estimation of the anomaly measure (or under-calculaticthefp-
changes identified 12 top anomaly symptoms. Within these, yajye) due to the convolutional synthesis’s independerarater
four are due to cause #2, one is due to #4, one is due to #5, assumption. Figure 10 shows its quantified p-values inicelao
and three are due to a combination of causes #6 and #7. Thethose under the more generally applicable bounding arsalysi
remaining three are probable false positives. Finally, Figure 9 also shows that the raw-difference apgida
e We identified 15 top symptoms on Linux 2.6.10 to 2.6.23 ooy in identifying performance anomalies. Most of the #igant

evolution anomalies. Within these, 14 are due t0 cause #5 reference-to-target performance degradations can beierpl by
and one is due to cause #4. There is no false positive. normal system design intentions.

Comparison.For complex systems with multi-parameter exe- 4-3 Anomaly Cause Discovery
cution conditions, our bounding analysis in Section 2.2jotes We attempted to discover the causes of the identified anomaly
a conservative estimation of the anomaly measure whictslead  symptoms using our reference-driven system metric filtp(ate-



Category

Event types

Process management | Kernel thread creation, process fork or clone, process xitess wait, process signal,
process wakeup, CPU context switch

System call System call enter, system call exit (distinct event typeefach system call number)
Memory system Page allocation, page free, page swapin, page swapout
File system File execution, file open, file close, file read, file write, Bkek, file ioctl, file prefetch,

start waiting for a data buffer, finish waiting for a data lenff

1/0 scheduling

Request arrival, request re-queue, request dispatchesegmoval, request completion

(when enabled)

Anticipatory schedulingl Request arrival, request dispatch, request completiditigation timeout, request deadling
triggering immediate service, anticipation stop, varicessons to stop anticipation

SCSI device

SCSI device read request, SCSI device write request

Interrupt Enter interrupt handler, exit interrupt handler (distiaeent type for each interrupt identifie

Network socket

Socket call, socket send, socket receive, socket creation

Table 1: Traced Linux event types. The total number of eventypes is up to 624 for Linux 2.6.10 and up to 703 for Linux 2.6.23The
difference in event type number is mainly due to additional gstem calls in newer kernels.
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Figure 9: Numbers of identified true anomalies and probable
false positives (in Linux 2.6.23) out of the total 300 sampte
For raw-difference, the identified anomalies are those withthe
highest 5% reference-to-target performance degradation atio.
This threshold is comparable to the 0.05 p-value thresholdsed
in the other two approaches.

include the delay between a system call enter and exit, the
delay between file system buffer wait start and end, the delay
between a block-level I/0 request arrival and its dispadcld,

the delay between a request dispatch and its completion.
Event parameters Examples include the file prefetch size,
SCSI /O request size, and file offset of each 1/0 operation to
block device.

I/O concurrency(number of outstanding requests). Exam-
ples include the 1/O concurrency at the system call level, th
block level, and the SCSI device level.

The total number of derived system metrics is up to 1,210 for
Linux 2.6.10 and up to 1,361 for Linux 2.6.23. Note that some
metrics may not manifest or manifest very rarely in specifiecai-
tion conditions.

Discovered Anomaly Causesor each pair of reference and

Bounding

0.5

Quantified anomaly in p-value

Convolution | =

S
S

Ab LT s,
RLda
100

200 300

Sampled executions (ranked on bounding p-value)

target executions with anomalous performance degradatien
ranked the reference-target manifestation differencedl derived
system metrics. As a larger difference infers a higherililagd of
anomaly correlation, such ranking helps us to narrow thepeacd
root cause analysis significantly. Note that even with timgshof
anomaly-related system metrics, the final root cause anadyitl

involves non-trivial human effort. In our evaluation, sutiiman

analysis took about one or two days for each anomaly cause dis

covery. Our explorations on Linux 2.6.10 and 2.6.23 disoese

seven anomaly causes (two of which matched known anomalies i

our earlier work [15]). Below we describe the discoveredses
preceded by the metric filtering results that helped ouradisy.

Figure 10: Quantified p-values under different approachesdr
300 sampled execution conditions (in Linux 2.6.23).

scribed in Section 3.1). This evaluation demonstratesfthetiave-

ness of our proposed approach. The discovered causes #tso he
validate the identified anomaly symptoms by matching theth wi

real causes in the implementation, as explained in Sectin 4

Traced Events and Derived System Metrieg.first de-
scribe traced events and derived system metrics for ouremsfe-
driven metric filtering. Table 1 lists the specific Linux evéypes

we traced by instrumenting the operating system. We chasa th

for their easy traceability and their perceived relevamcthe 1/0
performance. From these traced events, we derived thenalip
system metrics for performance anomaly analysis:

o Delay of adjacent arrivals for each type of events
e Delay between causal events of different typ&xamples

Anomaly cause #1 (known [15]), afflicting 2.6:1The ranked

metric differences between reference and target execution
are shown in Figure 11(A). The two most differing metrics
are the decreases of prefetching operation frequency and of
the device-level I/O request size. These hints led us to the
following anomaly cause. Linux 2.6.10 marks the disk as
congested when there are a large number (113 and above)
of requests in the device queue. During disk congestion, the
OS cancels all prefetching operations and reverts to mostly
single-page granularity I/O accesses. This strategy ib-pro
ably due to the intuition that at high load, prefetching i no
likely to complete on time for application access and thus it
is not useful. However, this may also lead to extremely poor
1/O throughput due to frequent disk seeking.

Anomaly cause #2 (new), afflicting 2.6.2Bhe fourth and fifth

highest ranked metrics in Figure 11(B), prefetching opera-
tion frequency and sizes, helped us to make the following
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Figure 11: Metric difference (in the earth mover’s distance[14]) between the target anomalous execution and its normakference
for anomaly cause discovery. Each marker represents a metri(metrics with too few samples in the executions are not shaw. We
single out the most helpful system metric(s) for each anomglcause discovery and mark them as five-point star(s) in the pt.

discovery. Anomaly cause #1 appears to have been cor-
rected since Linux 2.6.11, by only canceling asynchronous
prefetching operations at disk congestions.(synchronous

prefetching is allowed to proceed). However, the some-
what arbitrary disk congestion threshold at 113 queued
I/0O requests still remains and it causes anomalous perfor-

the file beginning, Linux 2.6.23 considers it a random access
and does no prefetching at all, which typically results &fin
ficient small-granularity 1/0. As in the case of cause #4, the
intention would likely be to reduce wasted prefetching on un
needed data, but the potential cost of frequent disk seeking
may outweigh the reduced waste on 1/O bandwidth.

mance deviations when such a threshold is crossed. Specifi- Anomaly cause #6 (new), afflicting 2.6.10/2.6.2Z8e most dif-

cally, sometimes the throughput is dramatically improved a
slightly higher workload intensity due to the cancellatafn
asynchronous prefetching.

Anomaly cause #3 (known [15]), afflicting 2.6.10/2.6.ZBhe

most differing metric in Figure 11(C) is the frequency of
anticipation stops due to the arrival of a new I/O request
with a shorter estimated disk seek cost. This directly led to
the anomaly cause that Linux inaccurately estimates tleat th
seek cost is proportional to the seek distance (which isinac
curate due to disk head acceleration and settle-down cost).

Anomaly cause #4 (new), afflicting 2.6:2Bhe second highest

ranked metric in Figure 11(D), the I/O operation file offset,
helped us to discover the following anomaly cause. The OS

fering metric in Figure 11(F), the frequency of anticipatio
stops due to timeouts, led us to the following anomaly cause.
The anticipatory scheduler only allows outstanding read op
erations from one process at a time. This restriction, how-
ever, does not prevent multiple outstanding device-lei@l |
requests—in the case of splitting a large file system-legpel o
eration into multiple device-level requests to satisfy shme
limit, and in the case of concurrent asynchronous prefetchi
and synchronous I/O from a single process. In such cases, the
anticipation timer is started after the first device-lewguest
returns, causing premature timeout and issuance of otber pr
cesses’ requests (often before all outstanding requests fr
the current process return).

employs a slow-start phase in file prefetching—prefetching Anomaly cause #7 (new), afflicting 2.6.2&orrection to the

takes place with a relatively small initial depth, and then
the depths increase for later prefetching upon detection of
a sequential access pattern. Compared to the earlier mersio
of Linux 2.6.10, Linux 2.6.23 employs a more conservative
slow-start—smaller initial depth and slower increasesisTh
may cause substantial increases in disk seek frequency unde
concurrent 1/0 workloads. The intention of such change was
likely to reduce wasted prefetching on unneeded data. How-
ever, it might be a wrong tradeoff given that the existing 1/0
prefetching depth is already far below a balanced level [8].

Anomaly cause #5 (new), afflicting 2.6:23he fourth high-

est ranked metric in Figure 11(E), the device-level I/O re-
quest size, was helpful. Its manifestation distributiontar-
get/reference executions were shown as an example in Sec-
tion 3.1 (Figure 6). When a file access does not start from

anomaly cause #6 does not completely compensate the
anomalous performance degradation between the reference
and target executions. A closer look at the two highest
ranked metrics, anticipation stops due to timeouts and ex-
cessive inter-1/0O thinktime (in relation to timeout), les 1o
the following additional anomaly cause. Considering the fo
lowing code in anticipatory I/O timeout setup:
/+* max time we may wait to anticipate a read

(default around 6ns) */
#define defaul t _antic_expire ((Hz/ 150)?HzZ/ 150: 1)
With 1 KHz kernel ticks z=1000), this code calculates cor-
rect timeout value of six ticks. However, very recent Linux
kernels (including 2.6.23) employ 250 Hz kernel ticks on
default. Consequently the above code calculates a timeout
value of one tick. Effectively, the anticipation timeoutnca
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Figure 13: Effect of kernel corrections (for anomaly causes
#6/#7) on an 1/0O microbenchmark. All workload setup is the
same as the experiment described in Figure 2.

occur anywhere from 0 to 4ms and we observe timeouts ning bids or items for sale in various geographic regionse Wb

as short as 100s in practice. After our discovery and re-

server converts results from the middle-tier into predapte TML

port, this performance anomaly has been acknowledged by format for end users. RUBIS ran on top of the JBoss Applicatio

the Linux kernel development team [10].

The discovered anomaly causes are of different natures.eife b
lieve only #1, #6, and #7 are unqualified bugs that should Ibe co
rected without question. Causes #4 and #5 are better dedab
partially beneficial optimizations that may degrade penfance in
some workload conditions. Corrections to these anomalgesu
should be made in special-purpose systeeg,(machines dedi-
cated to run a particular web server workload) that are mast s
ceptible to the anomalous conditions. Finally, #2 and #3naoet
likely intentional simplifications for which perfection&€., opti-
mal threshold setting and accurate disk seek time estimatice
difficult to realize.

Effects of CorrectionsTo demonstrate the effects of
anomaly corrections, we show the I/O performance on cardect
Linux 2.6.23 kernel for the two performance anomaly example
provided in Section 2.1. Results in Figure 12 indicate that o
anomaly correction improves the SPECweb99 throughput By 30
on Linux 2.6.23. Figure 13 demonstrates that our correstion
prove the system I/O throughput by 26—37% during concueret
cutions. More importantly, our corrections lead to prealit¢ per-
formance behavior patterns during system version evaiugiod
execution condition changes.

5. CASE STUDY ON A DISTRIBUTED ON-
LINE SERVICE

This section presents a preliminary case study on anomédg-de
tion and system management for a J2EE-based distributéaeonl
service. First, we show that our change profiles capturetiveu
performance expectations across system parameters. dBultir
reference-driven anomaly identification, we further shbat sys-
tem reconfiguration can be a promising technique to evadmano
lous performance degradations (leading to performanceovep
ments of up to 69%).

5.1 Empirical Setup

We studied performance anomalies for the RUBIS online anocti
benchmark [13]. RUBIS is a multi-tier Internet service caoising
a web server, a database, and nine middle-tier EnterpnaeBian
(EJB) components. The database manages persistent infmnma
about users, items, and ongoing auctions. EJB componeaty qu
the database in order to compute business logic, such asithe w

Server, a middleware platform that provides proceduresdohing
remote data, communicating across cluster nodes, and ingnag
cluster resources. In our setup, the RUBIS application aapts
were distributed across three cluster nodes: our Tomcaseeler
ran on a front-end server, our MySQL database ran on a separat
back-end server, and the RUBIS EJB components were dittdbu
across all three for high performance [17].

Reference and target executions for this study are similar i
terms of their JBoss configuration and supported RUBIS veaudkl
An anomalous execution pair is one in which the request titrou
put, i.e., the number of user requests successfully completed, is
unexpectedly lower in the target execution compared to efer+
ence. We explored 5 JBoss configurations and 4 propertidseof t
RUBIS workload, which together represent over one milliotep-
tial execution conditions. The considered JBoss configaratare
(* indicates default settings):

1. EJB-component cache coherenc&o cache*, assuming
exclusive-access, or verifying content before use.

2. Component invocation protocol Java RMI or JBoss-
specific*.

3. Invocation retry policy never retry* or retry once.

4. Database driverversion 3.1 or version 5.0*.

5. Maximum concurrency (thread countjow (10), medium
(128)*, medium high (512), or high (2048).

We also considered several RUBIS workload properties:

6. HTTP session typeHTTP 1.0, HTTP 1.1, or SSL.

7. Database access frequency in the request ndi%6, 25%,
50%, 75%, or 100%.

8. State maintenance method for EJB componepésan man-
aged state persistence, container managed state pagsisten
session state maintenance, or stateless Servlets only.

9. Request arrival rateup to 180 requests per second.

We developed a custom workload generator that could togefe b
tween various settings of HTTP session types, request maxeb
request arrival rates. The RUBIS benchmark can be configured
to use different state maintenance policies. The datasebuo
database was sized according to published dumps at the RUBIS
web site [13]. Each node in our cluster was equipped with two
1.266 GHz Intel Xeon processors, 2 GB memory, and conneoted t
1 Gbps Ethernet.
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Figure 14: A partial set of single-parameter change profiles
(in histograms) for JBoss execution condition adjustmentsWe
perform pairwise tests in which each pair differs on only one
execution condition parameter and their performance devia
tion then contributes to the change profile of the said param-
eter. Each change profile reflects performance deviations be
tween about 260 pairs of sampled conditions.

5.2 Anomaly Symptom Identification and

Online Management

Figure 14 plots four single-parameter change profiles fer th
JBoss system (a partial set due to space limitation). Ouil@so
capture intuitive performance variation patterns thaewftlesign-
intended effects of each execution condition change. 8paity,
we provide the following intuitive understanding on the gt
parameter change profiles of Figure 14:

A) Updates in version 5.0 of the database driver, MySQL Con-
nectord [2], included a performance improving capability
called resultset streaming.

The cache coherence policy has little impact on perfogaan
since EJB cache misses are rare in our RUBIS setup.
Invocation retries may yield better performance sinayth
mask transient failures and sometimes salvage user raquest
that would otherwise be unsuccessful.

Low concurrency limits the utilization of available pligal
resources and therefore the medium concurrency may deliver
better performance.

B)

C)

D)

Single-parameter change profiles are the basis for ourerater
driven approach to online anomaly detection. We deploye8iRU
under the default JBoss configuration, and executed atieades
guence of user requests for over 4 hours. The trace that vaékisise
derived from realistic workload patterns of a large e-conmuaee-
tailer and a global enterprise application at HP. Requestsdch
service were mapped to RUBIS requests to mimic their réalist
nonstationary workloads [16]. The workload trace is publavail-
able [1]. During our tests, request arrival rates varieddry arders
of magnitude and fluctuated in a sinusoidal fashion. Evegyest
mix setting was encountered.

We followed the general approach described in Section 2. T
execution was divided into 5-minute intervals. Figure 16veh
the throughput of the execution condition at each interrahKed

4000

< normal
30001 * anomally
4 reconfigured

2000

Throughput (req./min.)

1000

Workload Conditions (sorted by throughput)

Figure 15: Throughput under each 5-minute interval in our
trace. Each point on the x-axis reflects a unique combinatioof
request rate and request mix. Diamonds and five-point starse-
flect throughput under default configuration settings. Stars are
conditions identified as anomalous. Squares show the throhg
put under alternative JBoss configuration settings. We foud
the alternative settings by randomly testing 20 nearby congju-
ration settings.

on the observed throughput). Our approach identified 7 anoma
lous execution conditions (p-value of 0.10 or less in thiales-
tion), including the conditions with®? and 11" highest through-
put. Anomalies with such subtle symptoms,, anomalous targets
exhibiting decent absolute performance, are hard to detéoiv-
ever, Figure 15 also shows the opportunistic cost repredemy
such anomalies. By reconfiguring the JBoss system parasrnefter
the two anomalies, we were able to achieve respective peafoce
improvements of 25% and 69% under the same workload condi-
tions. This result suggests that system reconfiguratiorhiniig a
valuable tool in evading performance anomalies.

6. RELATED WORK

Recent research has tackled performance anomaly detectibn
diagnosis for complex systems. Reynolelsal. [12] proposed
an infrastructure, calleHi p, to expose system performance prob-
lems by comparing system metric manifestation and programm
specified expectation. Joukt al. [6] uncovered operating sys-
tem performance problems by analyzing the latency digidhu
of system execution. Without systematic understandingxef e
pected performance, these anomaly identification appesacdly
on programmer-specified expectations or they target spexyifi-
tem properties with known normal behaviors. By using refees,
our approach requires little knowledge on the target sysiem
sign/implementation and it can identify anomalies overaviahges
of system execution conditions.

Besides our reference-driven approach, performance &apec
tions can also be derived through absolute performance Isode
(typically driven by design specifications) [15,17, 18] plarticular,
IRONModel [18] characterizes performance anomalies asrobd
deviations from such model expectations. However, it ifiatift
to construct comprehensive, design-driven performanagetsdor
complex systems with varying execution conditions (inatgdsys-
tem configuration parameters and workload properties).cEtep
tions and corresponding anomalies can also be derivedghnma-
chine learning techniques [11]. Most of the learning teghas,
however, do not produce easily interpretable results. Emqunantly
they cannot directly help discover anomaly causes and etériv
anomalies are often hard to validate.

The use of correct peer systems to aid problem diagnosisis no
new. Wanget al.[21] discovered erroneous Windows registry con-



figurations by matching with a set of known correct configorz.
Triage [20] and delta debugging [22] proposed to isolatebpro
lem sources by comparing against successful program rutts wi
slightly different inputs. These studies focus on diagngsion-
performance problems for which anomaly symptoms (crashes o
program failures) are obvious. However, the normal peecexe
tions are not easily identifiable for performance anomalglyn
sis. Further, performance analysis must handle quanttagistem
metrics €.g, the latency of the ead system call or the number of
outstanding I/O requests) that typically manifest as a bednying
sample measurements. This increases the challenge instauolgr
ing the difference between the anomalous target and itearage.
Our search of performance anomalies in a multi-parameter sy
tem condition space is reminiscent of the software testimoglpm
of designing efficient test cases with good coverage ovengptax
system. Grindaét al’s survey [4] summarized a number of combi-
natorial strategies to choose values for individual inmarameters
and combine them into complete test cases. In the contextfef s
ware testing, it is assumed that the success or failure astaray
condition can be easily determined after testing. Howeddenti-
fying performance anomaly at a tested condition is funddatign
more challenging. This paper proposes to identify perforraea
anomalies by checking unexpected performance degraddtiom
reference to target conditions. This approach is based calalde
technique to construct probabilistic characterizatiohexpected
performance deviations over a large execution conditi@tsp

7. CONCLUSION

This paper makes several contributions to reference-ules-
formance anomaly identification. First, we present a sdéalap-
proach to produce probabilistic expectations on perfocaatevi-
ations due to execution condition changes. This approdaisals
to identify anomalous performance degradations betwderemce
and target executions in complex systems with wide rangesesf
cution conditions. Second, we propose a reference-dripproach
to filter anomaly-related performance metrics from manyetas
of collectible metrics in today’s systems. Such filteringn deelp
narrow the scope of anomaly root cause analysis.

We apply our techniques to identify anomaly symptoms and
causes in real system software including the Linux 1/O sstesy
and a J2EE-based distributed online service. In particelahave
discovered five previously unknown performance anomalyesu
in the recent Linux 2.6.23 kernel, including one that hambae
knowledged by the Linux kernel development team [10]. Gorre
tions to these anomalies can significantly improve the syster-
formance. But more importantly, they lead to predictablegfqre
mance behavior patterns during system version evolutiohexn
ecution condition changes. Such predictability [11, 15,18] is
an essential foundation for automatic system managenientd:
source provisioning and capacity planning.

Finally, our work has uncovered interesting charactesstf
real performance anomalies. For instance, less than halfradis-
covered Linux performance anomaly causes are unqualifigd. bu
The rest are better described either as partially beneéipiithiza-
tions that may degrade performance in some workload camditi
or as intentional simplifications for which perfect implemegions
are difficult to realize. Also, we demonstrated the potérfta
reference-driven anomaly detection in a realistic distel online
system. In doing so, we discovered that subtle anomaliggitha
not exhibit poor absolute performance can represent signifiop-
portunistic cost. System reconfiguration may be a promitenb-
nigue to avoid such lost performance.
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