
An E�cient Algorithm for Concurrent Priority Queue Heaps�Galen C. Hunt Maged M. Michael Srinivasan Parthasarathy Michael L. ScottDepartment of Computer Science, University of Rochester, Rochester, NY 14627-0226fgchunt,michael,srini,scottg@cs.rochester.eduDecember 1994
AbstractWe present a new algorithm for concurrent access to array-based priority queue heaps. Deletionsproceed top-down as they do in a previous algorithm due to Rao and Kumar [6], but insertionsproceed bottom-up, and consecutive insertions use a bit-reversal technique to scatter accesses acrossthe fringe of the tree, to reduce contention. Because insertions do not have to traverse the entireheight of the tree (as they do in previous work), as many as O(M) operations can proceed inparallel, rather than O(logM) on a heap of size M . Experimental results on a Silicon GraphicsChallenge multiprocessor demonstrate good overall performance for the new algorithm on smallheaps, and signi�cant performance improvements over known alternatives on large heaps with mixedinsertion/deletion workloads.�This work was supported in part by NSF grants nos. CDA-8822724 and CCR-9319445, and by ONR researchgrant no. N00014-92-J-1801 (in conjunction with the DARPA Research in Information Science and Technology|HighPerformance Computing, Software Science and Technology program, ARPA Order no. 8930).1

mls
Tech. Rep. 560

void insert(int priority, int data, heap_t *heap){ LOCK(heap->lock);i = ++heap->size; ip = &heap->item[i];ip->pri = priority; ip->dat = data;while(i>1){ parent = i>>1; pp = &heap->item[parent];if(ip->pri < pp->pri) SWAP(ip,pp); /* swap items i and parent */else break;i = parent; ip = pp;}UNLOCK(heap->lock);}int delete(int *priority, int *data, heap_t *heap){ LOCK(heap->lock);if(heap->size < 1){ UNLOCK(heap->lock); return 0; }i=1; ip = &heap->item[1];*priority = ip->pri; *data = ip->dat;lp = &heap->item[heap->size--];ip->pri = lp->pri; ip->dat = lp->dat;while(i <= heap->size>>1){min = MIN_CHILD(i); /* index of child with higher priority */mp = &heap->item[min];if(ip->pri > mp->pri) SWAP(ip,mp); /* swap items i and min */else break;i = min; ip = mp;}UNLOCK(heap->lock);return 1;} Figure 1: Single-lock heap operations.1 IntroductionThe heap data structure is widely used as a priority queue [2]. The basic operations on a priorityqueue are insert and delete. Insert inserts a new item in the queue and delete removes and returnsthe highest priority (lowest numbered) item from the queue. A heap is a binary tree with theproperty that the value of the key at any node is less than the value of the keys at its children(if they exist). An array representation of a heap is the most space e�cient: the root of the heapoccupies location 1 and the left and right children of the node at location i occupy the locations 2iand 2i+ 1, respectively. No items exist in level l of the tree unless level l� 1 is completely full.Many applications (e.g. heuristic search algorithms, graph search, and discrete event simula-tion [4, 5]) on shared memory multiprocessors use shared priority queues to schedule sub-tasks. Inthese applications, items can be simultaneously inserted and deleted from the heap by any of theparticipating processes. The simplest way to ensure the consistency of the heap is to serialize theupdates by putting them in critical sections protected by a mutual exclusion lock (see �gure 1 forC-like pseudo-code for insert and delete operations). This approach limits concurrent operationson the heap to one. Since updates to the heap typically modify only a small fraction of the nodes,more concurrency should be achievable by allowing processes to access the heap concurrently aslong as they do not interact with each other.Biswas and Browne [1] proposed a scheme that allows many insertions and deletions to pro-ceed concurrently. Their scheme relies on the presence of maintenance processes that dequeue2

sub-operations from a FIFO work queue. Sub-operations are placed on the work queue by theprocesses performing insert and delete operations. The work queue is used to avoid deadlock dueto insertions and deletions proceeding in opposite directions in the tree. The need for a work queueand maintenance processes causes this scheme to incur substantial overhead. Rao and Kumar [6]present another scheme that avoids deadlock by using top-down insertions, where an inserted itemhas to traverse a path through the whole height of the heap. Jones [3] presents a concurrent prior-ity queue algorithm using skew heaps. He notes that top-down insertions in array-based heaps areine�cient, while bottom-up insertions would cause deadlock if they collide with top-down deletionswithout using extra server processes.This paper presents a new concurrent priority queue heap algorithm that addresses the problemsencountered in previous research. On large heaps the algorithm achieves signi�cant performanceimprovements over both the serialized single-lock algorithm and the algorithm of Rao and Kumar,for various insertion/deletion workloads. For small heaps it still performs well, but not as well asthe single-lock algorithm. The new algorithm allows concurrent insertions and deletions in oppositedirections, without risking deadlock and without the need for special server processes. It also usesa bit-reversal technique to scatter accesses across the fringe of the tree to reduce contention.Section 2 presents the new algorithm and an analysis of its performance advantages. Section 3presents experimental results on a Silicon Graphics Challenge multiprocessor. It compares the newalgorithm to the single-lock algorithm and to the algorithm of Rao and Kumar, demonstratingperformance improvements for a variety of workloads. Section 4 summarizes our conclusions.2 The AlgorithmThe new algorithm uses mutual exclusion locks on each node in the heap and on a variable thatholds the number of items in the heap. Also, each node has a tag that indicates whether it is empty,valid, or in transient state due to an update to the heap by process pid. The tags serve to allow(bottom-up) insertions and (top-down) deletions to proceed in opposite directions without the needfor a work queue or extra service processes [1]. The tags in the new algorithm allow a process toe�ciently identify the item it is moving up or down the heap even if the item has been swappedby another process. For example, when a (top-down) delete operation swaps an item that is beinginserted (bottom-up), the tags prevent the unlocked inserted item from being wrongly swapped byanother parallel insert operation. Another advantage of the new algorithm is that unlike top-downinsertions, bottom-up insertions do not necessarily have to traverse the whole height of the heapto complete the operation, thus reducing traversal overhead, and contention on topmost nodes.In some de�nitions of heaps [2], all nodes in the last level of the heap to the left of the lastitem have to be non-empty. This is not required by priority queue semantics, or heap logarithmiccomplexity. In the new algorithm, we relax this restriction. Consecutive insertions traverse di�erentsub-trees by using a bit reversal technique similar to that of an FFT computation [2]. For example,in the 3rd level of a heap (nodes 8-15, if the root is node 1), eight consecutive insertions would startfrom the nodes 8, 12, 10, 14, 9, 13, 11, and 15, respectively. Notice that for any two consecutiveinsertions, the two paths from each of the bottom level nodes to the root of the heap have no commonnodes other than the root, thus reducing the contention on node locks. Similarly, consecutivedeletions from the heap would follow the same pattern but in reverse order.Since insertions in the new algorithm do not have to traverse the whole height of the tree, andsince consecutive insertions have almost disjoint paths to the root, O(M) heap operations can makeprogress concurrently. The bound on concurrency in Rao and Kumar's algorithm is O(logM).3

void concurrent_insert(int priority, int data, heap_t *heap){ LOCK(heap->lock);i = BIT_REVERSE(++heap->size); ip = &heap->item[i];LOCK(ip->lock);UNLOCK(heap->lock);ip->pri = priority; ip->dat = data;if(i == 1){ ip->tag = PRESENT; i = 0; }else ip->tag = pid;UNLOCK(ip->lock);while(i > 1){parent = i>>1; pp = &heap->item[parent];LOCK(pp->lock);ip = &heap->item[i];if(pp->tag == PRESENT) has_p_lck = 1;else if(pp->tag == EMPTY){ UNLOCK(pp->lock); i = 0; break; }else if(pp->tag == pid){ UNLOCK(pp->lock); i = parent; continue; }else{ UNLOCK(pp->lock); has_p_lck = 0; }LOCK(ip->lock);if(ip->tag == pid){if(has_p_lck){if(ip->pri < pp->pri){SWAP(pp,ip);if(parent == 1){ pp->tag = PRESENT; next = 0; } else next = parent;}else{ ip->tag = PRESENT; next = 0; }}else next = i;}else next = parent;if(has_p_lck) UNLOCK(pp->lock);UNLOCK(ip->lock);i = next;}if(i == 1){ip = &heap->item[i];LOCK(ip->lock);if(ip->tag == pid) ip->tag = PRESENT;UNLOCK(ip->lock);}} Figure 2: Concurrent insertion.Figures 2 and 3 present C-like pseudo-code for the insertion and deletion parts of the newalgorithm, respectively. Initially, all locks are free, all node tags are set to EMPTY, and the numberof elements in the heap is zero.Instead of computing the bit-reverse (O(n) time, where n is the number of bits to be reversed)for each operation on the heap, we use a bit-reverse counter with amortized time O(1) for longsequences of increments only or decrements only. However alternating increments and decrementsmay result in O(n) complexity. Figure 4 shows the bit-reversal routines.3 Experimental Results3.1 MethodologyWe used a 12-processor Silicon Graphics Challenge multiprocessor to compare the performance ofthe new algorithm, the single-lock algorithm, and Rao and Kumar's algorithm. We tried the latterboth with and without adding our bit-reversal technique.4

int concurrent_delete(int *priority, int *data, heap_t *heap){ LOCK(heap->lock);if(heap->size < 1){ UNLOCK(heap->lock); return 0; }last = BIT_REVERSE(heap->size--); lastp = &heap->item[i];LOCK(lastp->lock);UNLOCK(heap->lock);captive_pri = lastp->pri; captive_dat = lastp->dat; lastp->tag = EMPTY;UNLOCK(lastp->lock);i = 1; ip = &heap->item[1];LOCK(ip->lock);if(ip->tag == EMPTY){ UNLOCK(ip->lock); *priority = captive_pri; *data = captive_dat; return 1; }*priority = ip->pri; *data = ip->dat;ip->pri = captive_pri; ip->dat = captive_dat; ip->tag = PRESENT;left = i<<1;while(left < MAX_SIZE){right = left+1; lp = &heap->item[left]; rp = &heap->item[right];LOCK(lp->lock);if(lp->tag == EMPTY){ UNLOCK(lp->lock); break; }else{ min = left; mp = lp; }if(right < MAX_SIZE){LOCK(rp->lock);np = rp;if(rp->tag != EMPTY)if(rp->pri < lp->pri){ min = right; mp = rp; np = lp; }UNLOCK(np->lock);}if(mp->pri < ip->pri) SWAP(ip,mp);else{ UNLOCK(mp->lock); break; }UNLOCK(ip->lock);i = min; ip = mp; left = i<<1;}UNLOCK(ip->lock);return 1;} Figure 3: Concurrent deletion./* initially *counter = *reverse = 0, *high_bit = don't_care */void increment(int *counter, int *reverse, int *high_bit){ if(*counter++ == 0){ *reverse = *high_bit = 1; return; }bit = *high_bit>>1;while(bit){ *reverse ^= bit; if(*reverse & bit) break; bit >>= 1; }if(!bit) *reverse = *high_bit <<= 1;}void decrement(int *counter, int *reverse, int *high_bit){ *counter--;bit = *high_bit>>1;while(bit){ *reverse ^= bit; if(!(*reverse & bit)) break; bit >>= 1; }if(!bit){ *reverse = *counter; *high_bit >>= 1; }} Figure 4: A bit-reverse counter.5

For mutual exclusion we used test-and-test-and-set locks with backo� using the MIPS R4000load-linked and store-conditional instructions. On small-scale multiprocessors like the Chal-lenge, these locks have low overhead compared to other more scalable locks.To evaluate the performance of the algorithms under di�erent levels of contention, we variedthe number of processes in our experiments. Each process runs on a dedicated processor in a tightloop where it repeatedly updates a shared heap. Thus, in our experiments the number of processorscorresponds to the level of contention. We believe these results to be comparable to what wouldbe achieved with a much larger number of processes, each of which was doing signi�cant real workbetween queue operations. In all experiments, processors perform equal workloads.We studied the performance with workloads of insertions only, deletions only, and variousmixed insert/delete distributions. We also varied the initial number of full levels in the heap beforestarting time measurements to identify performance di�erences with di�erent heap sizes. For themixed insert/delete experiments we used workloads of 200,000 heap operations. Experiments withsmaller workloads are too fast to time. In these experiments, the heap size remains almost constantas the number of insertions and deletions are equal and processors alternate performing insertionsand deletions. We also ran experiments with 100,000 insertions only, and with 100,000 deletionsonly on a 17-level-full heap. Inserted values were chosen randomly and uniformly on the domain of32-bit integers.All the C programs for the di�erent algorithms were compiled with the highest optimizationlevel, and were carefully hand-optimized. For the multiple-lock algorithms we changed the datalayout to reduce the e�ect of false sharing, but we did not apply this optimization to the single lockalgorithm as it does not need it and it would only produce unnecessary overhead. Therefore, in ourexperiments we were using the best version of each algorithm, thus guaranteeing fair evaluation. Theprograms are accessible by anonymous ftp to ftp.cs.rochester.edu/pub/packages/concurrent heap,or by contacting any of the authors.3.2 ResultsFigures 5 and 6 show the time taken to perform 100,000 insertions and deletions, respectively, ona heap with 17 full levels. Figure 7 shows the time taken to perform 10,000 sets of 10 insertionsand 10 deletions on an empty heap. Figures 8 and 9 show the time taken to perform 100,000insert/delete pairs on a 7-level-full heap and a 17-level-full heap, respectively.In the case of insertions only without deletions (�gure 5), the single-lock and the new algorithmhave better performance because insertions do not have to traverse the whole height of the tree (asthey do in Rao and Kumar's algorithm), and most inserted items settle in the two bottom-mostlevels of the heap. In e�ect, insert operations for the single-lock algorithm in this case are fastenough that greater potential for concurrency in the new multi-lock algorithm does not mattermuch.In the case of deletions only without insertions (�gure 6), most deletions have to traverse thewhole height of the tree. Therefore, the delete operation traverses many nodes, and the multi-lockalgorithms outperform the single-lock algorithm. Because deletions in the new algorithm proceedtop-down in essentially the same manner as in Rao and Kumar's algorithm, the two algorithmsdisplay very similar performance.In the case of alternating insertions and deletions on an initially empty heap (�gure 7), theaverage height of the heap ranges from 3 to 5. The single-lock algorithm outperforms the otheralgorithms because it has low overhead and there is relatively little opportunity for the multi-lockalgorithms to exploit concurrency on very small heaps. Comparing the new algorithm with that ofRao and Kumar, we �nd that the new algorithm yields better performance because it su�ers less6

1 2 3 4 5 6 7 8 9 10 11

1

2

3

4

5

6

7

8

9

10

Processors

se
co

nd
s

17 level 100,000 ins

R&K multi−lock w/ bit−rev

R&K multi−lock

single lock

new multi−lock

Figure 5: Performance results for 100,000 insertions.
1 2 3 4 5 6 7 8 9 10 11

1

2

3

4

5

6

7

8

9

10

Processors

se
co

nd
s

17 level 100,000 del

single lock

R&K multi−lock w/ bit−rev

R&K multi−lock

new multi−lock

Figure 6: Performance results for 100,000 deletions.7

1 2 3 4 5 6 7 8 9 10 11

1

2

3

4

5

6

7

8

9

10

Processors

se
co

nd
s

empty 10,000 (10 ins 10 del)

R&K multi−lock w/ bit−rev

R&K multi−lock

new multi−lock

single lock

Figure 7: Performance results for 10,000 sets of 10 insertions and 10 deletions on an empty heap.
1 2 3 4 5 6 7 8 9 10 11

1

2

3

4

5

6

7

8

9

10

Processors

se
co

nd
s

7 levels 100,000 (1 ins 1 del)

R&K multi−lock w/ bit−rev

R&K multi−lock

new multi−lock

single lock

Figure 8: Performance results for 100,000 insert/delete pairs on a 7-level-full heap.8

1 2 3 4 5 6 7 8 9 10 11

1

2

3

4

5

6

7

8

9

10

Processors

se
co

nd
s

17 level 100,000(1 ins 1 del)

single lock

R&K multi−lock

R&K multi−lock w/ bit−rev

new multi−lock

Figure 9: Performance results for 100,000 insert/delete pairs on a 17-level-full heap.from contention on the topmost nodes of the heap. Note that after several insert/delete cycles, theitems remaining in the heap tend to be of very low priority, so new insertions have to traverse mostof the path to the root in the new algorithm. This means that the performance advantage of thenew algorithm over that of Rao and Kumar in this case is more because of reduced contention forthe topmost nodes of the tree (due to opposite directions for insertion and deletion) than becauseof shorter traversals.In the case of alternating insertions and deletions on a 7-level-full heap (�gure 8), the height ofthe heap remains almost constant. The single-lock algorithm continues to outperform the othersbecause of its low overhead, but the di�erence between it and the new algorithm narrows as thelevel of contention increases, since 7 levels provide the new algorithm with reasonable opportunitiesfor concurrency. Rao and Kumar's algorithm su�ers from high contention on the topmost nodes.In the case of alternating insertions and deletions on a 17-level-full heap (�gure 8), the largeheight of the heap makes concurrency, rather than locking overhead, the dominant factor in per-formance. The multi-lock algorithms consequently show improved performance over the single-lockalgorithm. As in the case of the empty and 7-level-full heaps, most new insertions tend to havehigher priorities than the items already in the heap, and thus eventually settle near the top of theheap. In spite of this, the new algorithm outperforms that of Rao and Kumar because of reducedcontention on the topmost nodes.4 ConclusionsWe have presented a new algorithm that uses multiple mutual exclusion locks to allow consistentconcurrent access to array-based priority queue heaps. The new algorithm avoids deadlock among9

concurrent accesses without forcing insertions to proceed top-down [6] or introducing a work queueand extra processes [1]. Bottom-up insertions reduce contention for the topmost nodes of the heap,and avoid the need for a full-height traversal in many cases. The new algorithm also uses bit-reversalto increase concurrency among consecutive insertions, allowing them to follow mostly-disjoint paths.We compared the performance of the new algorithm, the single-lock algorithm, and Rao andKumar's top-down insertion algorithm [6] on a 12-node SGI Challenge multiprocessor. The resultsshow that the new algorithm provides reasonable performance on small heaps, and signi�cantlysuperior performance on large heaps under high levels of contention.References[1] J. Biswas and J. C. Browne. Simultaneous Update of Priority Structures. In Proceedings ofthe 1987 International Conference on Parallel Processing, pages 124{131, August 1987.[2] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. MIT Press,Cambridge, Massachusetts, 1990.[3] D. W. Jones. Concurrent Operations on Priority Queues. Communications of the ACM,32(1):132{137, January 1989.[4] J. Mohan. Experience with Two Parallel Programs Solving the Travelling Salesman Problem.In Proceedings of the 1983 International Conference on Parallel Processing, pages 191{193,1983.[5] M. J. Quinn and N. Deo. Parallel Graph Algorithms. ACM Computing Surveys, 16(3):319{348, September 1984.[6] V. N. Rao and V. Kumar. Concurrent Access of Priority Queues. IEEE Transactions onComputers, 37(12):1657{1665, December 1988.

10

