
Failure-Atomic Persistent Memory Updates via JUSTDO Logging

Joseph Izraelevitz
U. Rochester/Hewlett Packard Labs

jhi1@cs.rochester.edu

Terence Kelly
Hewlett Packard Labs

terence.p.kelly@hpe.com

Aasheesh Kolli
U. Michigan/Hewlett Packard Labs

akolli@umich.edu

Abstract
Persistent memory invites applications to manipulate persis-
tent data via LOAD and STORE instructions. Because fail-
ures during updates may destroy transient data (e.g., in CPU
registers), preserving data integrity in the presence of fail-
ures requires failure-atomic bundles of updates. Prior failure
atomicity approaches for persistent memory entail overheads
due to logging and CPU cache flushing. Persistent caches
can eliminate the need for flushing, but conventional log-
ging remains complex and memory intensive. We present the
design and implementation of JUSTDO logging, a new fail-
ure atomicity mechanism that greatly reduces the memory
footprint of logs, simplifies log management, and enables
fast parallel recovery following failure. Crash-injection tests
confirm that JUSTDO logging preserves application data in-
tegrity and performance evaluations show that it improves
throughput 3× or more compared with a state-of-the-art al-
ternative for a spectrum of data-intensive algorithms.

Categories and Subject Descriptors D.4.5 [Operating Sys-
tems]: Reliability—fault-tolerance

Keywords non-volatile memory, persistent memory, crash-
resilience, failure-atomicity, transactions

1. Introduction
Emerging byte-addressable non-volatile memory (NVM)
device technologies are widely expected to augment and
perhaps eventually supplant conventional DRAM as den-
sity scaling limitations constrain the latter [37]. Meanwhile,
persistent memory implemented with conventional device
technologies (e.g., non-volatile DIMMS based on DRAM,
flash storage, and supercapacitors [51]) offers similar attrac-
tions: Regardless of how it is implemented, persistent mem-
ory invites applications to manipulate persistent application
data directly via ordinary LOAD and STORE instructions.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to
lists, contact the Owner/Author. Request permissions from permissions@acm.org or Publications Dept., ACM, Inc., fax
+1 (212) 869-0481. Copyright 2016 held by Owner/Author. Publication Rights Licensed to ACM.

ASPLOS ‘16 April 2–6, 2016, Atlanta, Georgia, USA
Copyright c© 2016 ACM 978-1-4503-4091-5/16/04. . . $15.00
DOI: http://dx.doi.org/10.1145/2872362.2872410

By contrast, on today’s conventional hardware with volatile
byte-addressable memory and non-volatile block-addressed
storage, complex multi-layered software stacks—operating
systems, file systems, and database management systems—
provide indirect and mediated access to persistent data.

Eliminating the memory/storage distinction and the asso-
ciated layers of intermediary software promises to stream-
line software and improve performance, but direct in-place
manipulation of persistent application data allows a failure
during an update to corrupt data. Mechanisms supporting
program-defined failure-atomic sections (FASEs) address
this concern. FASEs can be implemented as transactional
memory with additional durability guarantees [14, 52] or by
leveraging applications’ use of mutual exclusion primitives
to infer consistent states of persistent memory and guarantee
consistent recovery [9]. These prior systems offer generality
and convenience by automatically maintaining UNDO [9, 14]
or REDO [52] logs that allow recovery to roll back FASEs
that were interrupted by failure. Maintaining such logs in-
evitably entails space and time overheads; flushing logs from
transient CPU caches to persistent memory incurs additional
time and memory-bandwidth overheads.

Persistent CPU caches eliminate the need to flush caches
to persistent memory and can be implemented in several
ways, e.g., by using inherently non-volatile bit-storage de-
vices in caches [61] or by maintaining sufficient standby
power to flush caches to persistent memory in case of power
failure. The amount of power required to perform such a
flush is so small that it may be obtained from a superca-
pacitor [53] or even from the system power supply [32]. Pre-
serving CPU cache contents in the face of detectable non-
corrupting application software failures requires no special
hardware: STOREs to file-backed memory mappings persist
beyond process crashes [33].

However, even if persistent caches eliminate the cache
flushing overheads of FASE mechanisms, the overhead of
conventional UNDO or REDO log management remains. A
simple example illustrates the magnitude of the problem:
Consider a multi-threaded program in which each thread
uses a FASE to atomically update the entire contents of a
long linked list. Persistent memory transaction systems [14,
52] would serialize the FASEs—in effect, each thread ac-
quires a global lock on the list—and would furthermore

427

maintain a log whose size is proportional to the list mod-
ifications to support rolling back changes. A mutex-based
FASE mechanism for persistent memory [9] avoids serial-
izing FASEs by allowing concurrent updates via hand-over-
hand locking but must still maintain per-thread logs, propor-
tional in size to the amount of modified list data.

The key insight behind our approach is that mutex-based
critical sections are intended to execute to completion; un-
like optimistic transactions, they do not abort due to con-
flict. While it is possible to implement rollback for lock-
based FASEs [9], we might instead simply resume FASEs
following failure and execute them to completion. This in-
sight suggests a design that employs minimalist logging in
the service of FASE resumption rather than rollback.

Our contribution, JUSTDO logging, unlike traditional
UNDO and REDO logging, does not discard changes made
during FASEs cut short by failure. Instead, our approach re-
sumes execution of each interrupted FASE at its last STORE
instruction then executes the FASE to completion. Each
thread maintains a small log that records its most recent
STORE within a FASE; the log contains the destination ad-
dress of the STORE, the value to be placed at the destination,
and the program counter. FASEs that employ JUSTDO log-
ging access only persistent memory, which ensures that all
data necessary for resuming an interrupted FASE will be
available during recovery. As in the Atlas system [9], we
define a FASE to be an outermost critical section protected
by one or more mutexes; the first mutex acquired at the start
of a FASE need not be the same as the last mutex released
at the end of the FASE (see Figure 1). Auxiliary logs record
threads’ mutex ownership for recovery.

Our approach has several benefits: By leveraging persis-
tent CPU caches where available, we can eliminate cache
flushing overheads. Furthermore the small size of JUSTDO
logs can dramatically reduce the space overheads and com-
plexity of log management. By relying on mutexes rather
than transactions for multi-threaded isolation, our approach
supports high concurrency in scenarios such as the afore-
mentioned list update example. Furthermore we enable fast
parallel recovery of all FASEs that were interrupted by fail-
ure. JUSTDO logging can provide resilience against both
power outages and non-corrupting software failures, with
one important exception: Because we sacrifice the ability to
roll back FASEs that were interrupted by failure, bugs within
FASEs are not tolerated. Hardware and software technolo-
gies for fine-grained intra-process memory protection [12,
54] and for software quality assurance [7, 8, 19, 42, 60] com-
plement our approach respectively by preventing arbitrary
corruption and by eliminating bugs in FASEs.

In this paper, we describe the design and implementa-
tion of JUSTDO logging and evaluate its correctness and per-
formance. Our results show that JUSTDO logging provides
a useful new way to implement persistent memory FASEs
with improved performance compared with a state-of-the-art

system: On five very different mutex-based concurrent data
structures, JUSTDO logging increases operation throughput
over 3× compared with crash resilience by the state-of-the-
art Atlas FASE mechanism [9].

The remainder of this paper is organized as follows: Sec-
tion 2 presents key concepts and terminology used in our pa-
per. Section 3 reviews persistent memory technologies and
their implications for software. Section 4 presents our as-
sumptions regarding the system on which JUSTDO logging
runs and the programming model that our approach sup-
ports. Section 5 describes the design of JUSTDO logging, and
Section 6 presents the details of our current implementation.
Section 7 evaluates the correctness and performance of our
approach, and Section 8 concludes with a discussion.

2. Concepts & Terminology
Application data typically must satisfy application-level in-
variants or other correctness criteria. We say that data are
consistent if the relevant application-level correctness crite-
ria hold, otherwise the data are corrupt. Failures are events
that may corrupt application data; familiar examples include
application process crashes, operating system kernel panics,
and abrupt power outages. We say that a failure is tolerated if
application data consistency either is unaffected by the fail-
ure or is restored by post-failure recovery procedures. We
distinguish between corrupting and non-corrupting failures;
the former preclude successful recovery by corrupting ap-
plication data directly or by corrupting data necessary for
recovery (e.g., logs). A corrupting failure may be caused, for
example, by a STORE through a pointer variable containing
an invalid address.

We say that data are persistent if they survive tolerated
failures intact and are accessible by recovery code, other-
wise the data are transient. Similarly we say that memory lo-
cations, memory address ranges, processor cache lines, and
other places where data may reside are persistent or tran-
sient depending on whether or not the data they contain will
be available to recovery code following any tolerated fail-
ure. For example, a persistent memory region is a contigu-
ous range of virtual addresses whose contents will survive
tolerated failures. Note that persistence does not imply con-
sistency: Failure may render persistent data irreparably cor-
rupt, making recovery impossible.

We reserve the term non-volatile for characterizing de-
vice technologies that retain data even in the absence of
supplied power; examples include memristor, STT-RAM,
and PCM. Similarly the term volatile characterizes device
technologies such as DRAM that require continuously sup-
plied power to retain data. We emphasize that our persist-
ent/transient distinction is orthogonal to volatility. For exam-
ple, while non-volatile memory (NVM) facilitates the imple-
mentation of memory that is persistent with respect to certain
kinds of failure, persistent memory also admits alternative
implementations that do not involve NVM. Moreover, NVM

428

Figure 1. Two examples of lock-delimited FASEs. Left (lines 1–4): Nested. Right (lines 5–8): Hand-over-hand.

non−volatile memory (NVM)ALU

Registers volatile DRAM

volatile

Caches

non−volatile

Figure 2. Hybrid architecture incorporating both conven-
tional volatile CPU registers and DRAM in addition to non-
volatile CPU caches and NVM.

need not be persistent according to our definition: For exam-
ple, if thread stacks on a particular computer are reclaimed
by the operating system following abnormal process termi-
nation, then stack data are not available to recovery code and
are therefore transient, even if every byte of memory on the
machine is non-volatile.

We distinguish between partial and whole-system persis-
tence. The latter applies when the entire state of a machine
survives tolerated failures, whereas the former describes sit-
uations in which some data is persistent and some is tran-
sient. Partial persistence results when applications designate
only some data as persistent (e.g., a persistent memory re-
gion containing long-term application data) and allow the re-
mainder to be transient (e.g., per-thread function call stacks).
Partial persistence is a natural match for future hybrid archi-
tectures that incorporate both volatile and non-volatile com-
ponents, as depicted in Figure 2.

We conclude this section by using our definitions to
briefly define our hardware and software system model,
characterize the failures that JUSTDO logging can tolerate,
and describe situations where our approach is likely to offer
good performance; all of these topics are covered in greater
detail in subsequent sections. JUSTDO logging is designed
with future hybrid architectures in mind (Figure 2). More
specifically, our system model (Section 4) and our design
(Section 5) assume that CPU registers are transient but that
both CPU caches and (part of) main memory are persistent,
and our programming model assumes partial persistence.
JUSTDO logging tolerates non-corrupting failures that were
not caused by software bugs within a failure-atomic section.
We expect JUSTDO logging to achieve good performance if
it is inexpensive to impose ordering constraints on modifica-
tions to persistent data—as would be the case with persistent
caches and/or persistent STORE buffers integrated into the
CPU in addition to persistent memory.

3. Related Work
Hardware for Persistence Memory footprints of mod-
ern workloads are increasing at a rate higher than Moore’s
law [56]. With the end of DRAM scaling (the memory tech-
nology of choice for decades) on the horizon, much research
has focused on incorporating alternative, denser memory
technologies into future architectures [22, 23, 40, 56]. Po-
tential DRAM replacement technologies such as phase
change memory (PCM) [23], memristor [48] and spin-
torque transfer memory (SST-RAM) [3] offer higher den-
sities and are furthermore non-volatile. These non-volatile
memory (NVM) device technologies facilitate the imple-
mentation of memory that is persistent with respect to power
outages. Systems with persistent memory allow persistent
data manipulation via processor LOADs and STOREs [37],
a stark deviation from traditional disk/flash based durabil-
ity. The prospect of persistent memory has sparked new
research on file systems [10, 15, 18, 24], database sys-
tems [11, 13, 20, 27, 53], and persistent programming and
data structures [9, 14, 52, 58].

Ensuring recovery requires constraining the order in
which STOREs attain persistence. If memory is persistent
but CPU caches are not, carefully synchronized cache flush-
ing must be used to ensure that STOREs reach memory in
the desired order [5]. Intel has recently announced ISA ex-
tensions to optimize cache flushes for systems with persis-
tent memory [41]. Pelley et al. recently introduced memory
persistency models that build on memory consistency mod-
els [1] to provide guarantees on the order in which STOREs
become persistent [37].

The different NVM device technologies offer different
read/write/endurance characteristics and are expected to be
deployed accordingly in future systems. For example, while
PCM and Memristor are mainly considered as candidates
for main memory, STT-RAM is expected to be used in
caches [61]. Non-volatile caches imply that STOREs become
persistent upon leaving the CPU’s STORE buffers. Persis-
tent caches can also be implemented by relying on stand-by
power [32–34] or employing supercapacitor-backed volatile
caches to flush data from caches to persistent memory in the
case of a failure [53]. Recent trends show that non-volatile
caches are possible in the near future [53].

Software for Persistence Disk-based database systems
have traditionally used write-ahead logging to ensure consis-
tent recoverability [31]. Changing workloads, data models,

429

and storage media have inspired numerous refinements and
specializations represented by systems such as eNVy [55],
Berkeley DB [35], Stasis [44], MARS [13], and Rio Vista [27].
Proper transactional updates to files in file systems can sim-
plify complex and error-prone procedures such as software
upgrades. Transactional file updates have been explored in
research prototypes [36, 47]; commercial implementations
include Microsoft Windows TxF [30] and Hewlett Packard
Enterprise AdvFS [50]. Transactional file update is readily
implementable atop more general operating systems transac-
tions, which offer additional security advantages and support
scenarios including on-the-fly software upgrades [39]. At the
opposite end of the spectrum, user-space implementations
of persistent heaps supporting failure-atomic updates have
been explored in research [59] and incorporated into com-
mercial products [6]. Logging-based mechanisms in general
ensure consistency by discarding changes from an update in-
terrupted by failure. In contrast, for idempotent updates, the
update cut short by failure can simply be re-executed rather
than discarding changes, reducing required logging (similar
to [4, 21]).

Persistent memory has inspired research on program-
ming interfaces with durability semantics. Kiln [61] and
Lu et al. [28] describe mechanisms that provide atomic-
ity and durability guarantees for systems with persistent
caches and persistent memory, however, the programmer
remains responsible for ensuring isolation. Whole-system
persistence [32], a combined hardware and software tech-
nique, gives consistency guarantees for power failures, but
does not tolerate software errors. Mnemosyne [52] and NV-
Heaps [14] extend transactional memory to provide dura-
bility guarantees for ACID transactions on persistent mem-
ory. Mnemosyne emphasizes performance; the use of REDO
logs, for example, postpones the need to flush data to per-
sistence to a single end-of-transaction batch. NV-heaps, an
UNDO log system, emphasizes programmer convenience,
providing garbage collection and strong type checking to
help avoid pitfalls unique to persistent memory, e.g., point-
ers to transient data inadvertently stored in persistent mem-
ory. Given the ubiquity of lock-based concurrency control,
Atlas [9] provides durability guarantees for mutex-based
FASEs. Like JUSTDO logging, Atlas guarantees failure
atomicity for FASEs defined as outermost critical sections
(see Figure 1). Mnemosyne, NV-Heaps, and Atlas can all
tolerate abrupt power failures, non-corrupting kernel panics,
and non-corrupting process crashes; they do not tolerate cor-
rupting software errors because the latter may corrupt per-
sistent application data directly or may corrupt logs needed
for recovery.

The Atlas system, which we compare against in our eval-
uation (Section 7), illustrates the tradeoffs among conve-
nience, compatibility, generality, and performance that con-
front any implementation of FASEs. Atlas employs per-
thread UNDO logging to ensure the atomicity of FASEs.

An UNDO log entry is created for every STORE to persis-
tent memory that is executed by a thread in a program. The
log entry must be made persistent before the correspond-
ing STORE can occur. Unlike the isolated transactions of
NV-heaps and Mnemosyne, the outermost critical sections
that constitute Atlas FASEs may be linked by dependencies:
Sometimes an outermost critical section that has completed
must nonetheless be rolled back during recovery. Reclaim-
ing UNDO log entries no longer needed for recovery is there-
fore a non-trivial task in Atlas and is performed in parallel
by a separate helper thread. Because dependencies between
FASEs must be explicitly tracked, Atlas requires persistent
memory updates to be synchronized via locks, which pre-
cludes the use of atomics (in the sense of C++11) in the
current version of Atlas. Atlas emphasizes generality, pro-
grammer convenience, and compatibility with conventional
lock-based concurrency control; a sophisticated infrastruc-
ture is required to support these advantages, and the requi-
site UNDO logging and log pruning carry performance over-
heads. Specifically, the size of UNDO logs is proportional to
the amount of data modified in the corresponding FASE, and
the complexity of tracking dependencies for log reclamation
can grow with the number of FASEs.

4. System Model & Programming Model
System Model Figure 2 illustrates our system model. As
in prior work [28, 61], we consider a system in which both
main memory and processor caches are persistent, i.e., their
contents survive tolerated failures intact. We place no restric-
tions on how persistent memory and persistent caches are
implemented. A tolerated failure on such a system causes
all processor state to be lost but the contents of the caches
and memory survive and are available upon recovery. We
assume that power failures and non-corrupting fail-stop soft-
ware failures have these consequences.

If caches are persistent, a STORE will become persistent
once it reaches the coherence layer; release fences force
the STORE into persistence. By comparison, on an x86 sys-
tem with persistent memory but without persistent caches,
STOREs can be pushed toward persistence using a CLFLUSH.
On future Intel systems, new flushing instructions such as
CLFLUSHOPT and CLWB will provide fine-grained control
over persistence with lower overhead [16]. Flushing instruc-
tions will be used with SFENCE and PCOMMIT to constrain
persistence ordering.

Programming Model JUSTDO logging leverages mutex-
based concurrency control to infer FASEs. We assume that
failure-atomic modifications to shared data in persistent
memory are performed in critical sections delimited by lock
acquisitions and releases: A thread that holds one or more
locks may temporarily violate application-level consistency
invariants, but all such invariants are restored before the
thread releases its last lock (Atlas makes the same assump-
tion [9]). Therefore, data in persistent memory are con-

430

sistent in the quiescent state in which no thread holds any
locks, and we accordingly equate outermost critical sections
with FASEs: JUSTDO logging guarantees that a quiescent
(and thus consistent) state is restored following a failure. At
FASE exit, all modifications are guaranteed to be persistent,
therefore JUSTDO applications may safely emit output de-
pendent on a FASE—e.g., acknowledging to a remote client
that a transaction has completed—immediately after exit-
ing the FASE. Aside from standard lock-mediated data ac-
cesses, JUSTDO logging supports unsynchronized read-write
(but not write-write) races, which are condoned for C++
atomics. Although JUSTDO’s approach to failure atomicity
is designed for concurrency, it can be adapted to serial code
by simply delimiting FASEs as in parallel software.

As in prior approaches [9, 14, 52] our technique allows
the programmer to specify explicitly which data is to be pre-
served across failure by placing it in persistent memory; such
control is useful for, e.g., hybrid architectures that incorpo-
rate both DRAM and NVM. In such partially persistent sys-
tems that expose both persistent and transient memory to ap-
plications, JUSTDO logging requires that FASEs access only
persistent memory.

Our current implementation of JUSTDO logging is a C++
library with bindings for C and C++. The library requires
FASEs to reside in functions that consolidate boilerplate re-
quired for recovery and requires that STOREs occur via spe-
cial JUSTDO library calls. Future compiler support could
eliminate nearly all of the verbosity that our current proto-
type requires and could eliminate opportunities for incorrect
usage.

As in prior implementations of persistent memory FASEs,
JUSTDO logging maintains logs crucial to recovery in the
address space of a running application process. Application
software bugs or OS bugs that corrupt the logs or the ap-
plication’s data in persistent memory cannot be tolerated
by any of these approaches, but detectable non-corrupting
software failures can be tolerated. The main difference be-
tween JUSTDO logging and the earlier approaches to persis-
tent memory FASEs is that JUSTDO logging does not tolerate
software failures within FASEs: Our approach of resuming
execution at the point of interruption is inappropriate for
such failures, and our approach does not have the ability to
roll back a FASE interrupted by failure.

Use Cases Two widespread and important use cases, which
we call library-managed persistence and mandatory medi-
ated access, are well suited to the strengths and limitations
of JUSTDO logging and its synergies with complementary
technologies for fine-grained fault isolation and software
quality assurance techniques.

JUSTDO logging can provide the foundation for high-
performance thread-safe libraries that manage persistent
data structures on behalf of application logic. In such scenar-
ios, exemplified today by SQLite [45] and similar software,
the library assumes responsibility both for orderly concur-

rent access to shared data in persistent memory and for re-
covering persistent memory to a consistent state following
failures. JUSTDO logging enables expert library developers
to write lock-based FASEs in library routines and employ
JUSTDO logging to ensure consistent recoverability with
low overhead during failure-free operation. A well-designed
JUSTDO-based library will consolidate persistent data up-
dates in small FASEs that lend themselves readily to pow-
erful software quality assurance techniques [7, 8, 19]. One
advantage of this approach is that JUSTDO logging is em-
ployed only in the expert-written library and is not visible to
application developers; one limitation of this use case is that
FASEs cannot span library calls.

A related use case involves application logic of ques-
tionable quality or security that must be constrained to
manipulate valuable persistent data only indirectly, via a
trusted high-quality intermediary. A widespread example
of this pattern is commercial relational database manage-
ment systems, which mediate application access to database
tables while upholding data integrity constraints and pre-
venting arbitrary modifications of the database by buggy,
misguided, or malicious application logic. JUSTDO logging
provides a new high-performance logging strategy for the
intermediary in mandatory mediated access scenarios. OS
process boundaries coupled with user permissions can iso-
late untrusted application code from trusted intermediary
software, allowing only the latter direct access to persistent
data. However this isolation strategy, widely used today in
high-integrity database configurations, requires application
logic to communicate with trusted code via heavyweight
inter-process communication (IPC) mechanisms. Research
on fine-grained intra-process isolation [12], together with
JUSTDO logging, suggests a lightweight alternative: Appli-
cation logic accesses persistent data via a library linked into
the same address space as the application, precisely as in
the library-managed persistence scenario, but with a crucial
difference: The intra-process isolation mechanism protects
both the data and the trusted library from untrusted appli-
cation code. Such a strategy eliminates the overhead of IPC
between application code and the trusted intermediary with-
out weakening protection.

5. Design
JUSTDO logging implements lock-delimited failure-atomic
sections (FASEs) by recording sufficient information during
the execution of a FASE such that, if a crash occurs, each
FASE can resume at the last STORE it attempted prior to the
failure.

The key data structure for our technique is the JUSTDO
log, a small per-thread log. This thread-local log contains
only a single active entry at any one time, and is writ-
ten before every STORE within a FASE. The single active
log entry contains only the address to be written, the new
value to be written there, the size of the write, and the pro-

431

Figure 3. JUSTDO log format.

gram counter. Immediately after the log entry is completed,
the corresponding STORE is performed. Conceptually, the
JUSTDO log is a “done to here” note; recovery code lever-
ages the idempotence of STOREs to transform at-least-once
execution of the most recent STORE before a failure into cor-
rect resumption.

To recover using a crashed program’s set of per-thread
JUSTDO logs, recovery threads re-enter each interrupted
FASE at the program counter indicated in the FASE’s
JUSTDO log, re-acquire the appropriate locks, re-execute the
idempotent STORE, and continue execution until the end of
each FASE.

Successful recovery requires additional steps when writ-
ing a JUSTDO FASE. In particular, we must ensure that the
instructions in a FASE do not access data that was stored
in transient memory, which will not have survived the fail-
ure. We satisfy this requirement by mandating that all LOADs
and STOREs within a FASE access only persistent memory.
Furthermore, we must ensure that instructions in a FASE
do not depend on data held only in volatile CPU registers.
We satisfy this requirement by preventing register promo-
tion [26, 43] of memory values within FASEs. Finally, the
recovery-time completion of each FASE must respect all
mutual exclusion constraints present in the program. We en-
sure this by recording the locks acquired and released in each
FASE in thread-local lock logs.

This section describes the design of the JUSTDO log and
our auxiliary data structures. For brevity we largely omit re-
lease fences from our discussion. We employ release fences
as necessary to constrain the order in which STOREs attain
persistence.

5.1 JUSTDO Log
The JUSTDO log is updated for every STORE within a FASE.
Our approach transforms every STORE in the original crash-
vulnerable FASE to both a log update and then the STORE in
the JUSTDO-fortified FASE.

Figure 3 illustrates the format of the entire thread-local
JUSTDO log. The log is implemented as a tightly packed
struct where each field holds critical recovery information.
To ensure atomic updates to the log, it actually holds two
entries, although only one is active at a time. In each entry,
we store the destination address, size, and new value. The
program counter value is shared between the entries, and we

use the high order bits of the program counter to indicate
which entry is active. On Intel x86, virtual addresses are 48
bits, facilitating this tight packing [16]. Additional bits in the
size field and indicator bit are reserved for future use (e.g.,
flags indicating an atomic store).

To update the log, both the new value and destination
address are STOREd (with the size packed into the high order
bits of the address pointer) in the inactive entry, followed by
a release fence to ensure that the writes have reached the
persistent cache. Subsequently, we STORE the new program
counter (with the indicator bit set for the recently updated
entry).

After the log has been successfully updated, we execute a
release fence (again to ensure that the updates are persistent),
then complete the persistent STORE by writing the new value
to the destination address.

5.2 Persistent-Only Accesses
We require that all memory LOADs and STOREs within
FASEs access only persistent data. This requirement extends
to thread-local locations that would ordinarily be transient,
such as variables on the stack. By mandating that FASEs
can access only persistent data we ensure that no updates in
a FASE are dependent on state destroyed by failure.

The persistent-only access requirement means that any
thread-local memory locations that might be accessed in the
FASE (including those normally stored on the stack) must be
moved to persistent memory prior to entering the first critical
section of a FASE, and, if desired, moved out of persistent
memory at the end of a FASE.

While this “persistent-only access” restriction may ap-
pear limiting, we find that it is compatible with familiar de-
sign patterns. Consider, for example, the ubiquitous “con-
tainer” pattern as applied to persistent data: (nearly) all of
the container metadata maintained by the library code is per-
sistent; similarly, the data stored in a persistent container is
also persistent. User code will ensure that its (possibly large)
data values are persistent before passing pointers to them
into the library; the library can verify that the data are in per-
sistent memory via range checking. It is straightforward to
migrate into persistent memory the relatively small amount
of transient data passed on the stack between client and li-
brary (e.g., the pointer to persistent data). Unlike physical
logging-type systems, our technique only requires the data
to be written to persistence once, and is consequently insen-
sitive to data size (see Section 7.4). The “small transient
state property” is typical of the exported methods of shared
persistent data structures and their maintenance operations
(e.g., rebalancing).

5.3 Register Promotion in FASEs
Register promotion is a compiler optimization that elimi-
nates redundant LOADs from memory by caching memory
locations in CPU registers [26, 43]. Register promotion in
FASEs is problematic for JUSTDO logging. Consider a value

432

in persistent memory that within a FASE is LOADed into a
register upon which two subsequent STOREs depend. If, due
to register promotion, the value is not re-LOADed from per-
sistent memory prior to influencing the second STORE, re-
covery from a crash immediately after the first STORE is im-
possible: The crash erases the register containing the value
upon which the second STORE depends.

Our current implementation prevents such anomalies by
selective use of the C/C++ “volatile” keyword. We em-
ploy a templated type wrapper within FASEs to ensure that
LOADs within FASEs occur via volatile pointers and are
therefore not elided by compiler optimization. Note that
STOREs are not affected by this LOAD-specific mechanism.
Manual inspection of the assembly code generated for our
FASEs confirms that our current approach prevents problem-
atic register promotions without affecting STOREs.

The penalty of disabling register promotion within FASEs
in our current prototype is that FASE execution time is
roughly doubled, i.e., crash-resilient JUSTDO-fortified crit-
ical sections are twice as slow as crash-vulnerable transient
critical sections. Compared to the logging overheads of alter-
native failure atomicity mechanisms, our overhead is lower
(Section 7). In the future, a JUSTDO-aware compiler could
more selectively disable register promotion in FASEs, allow-
ing it where it does not preclude recovery, thus improving
performance.

5.4 Lock Logs
Recovering from failure by resumption requires that every
recovery thread know which locks it holds, and furthermore
that no locks are held forever; otherwise safety violations
or deadlock can occur. Our design supports arbitrary lock
implementations; our current prototype employs standard
pthread mutexes.

To preserve lock ownership information across crashes,
we require that locks reside in a persistent memory region.
Threads maintain two per-thread persistent logs to facilitate
proper restoration of lock ownership during recovery: a lock
intention log and a lock ownership log. The purpose of the
former is to speed recovery by obviating the need to inspect
all locks in persistent memory, whereas the latter is used to
reassign locks to recovery threads. The size of a thread’s
lock ownership and lock intention logs at a particular point
in time is proportional to the number of locks held by the
thread.

Immediately prior to attempting a lock acquisition, a
thread declares its intent by recording the lock address in
the lock intention log. Immediately after acquiring the lock,
the thread records the acquisition in the lock ownership log
using a JUSTDO store. To unlock a mutex, a thread performs
the same operations in reverse order: It first uses a JUSTDO
store to remove the lock from its lock ownership log, then
unlocks the mutex, and finally removes the lock from the
lock intention log. This protocol ensures that following a
crash the per-thread lock intention logs collectively record

all locks that might be locked, and the lock ownership logs
record which thread has locked each lock that is certainly
locked.

5.5 Recovery
Recovery begins by using the per-thread lock intention logs
to unlock all mutexes that might have been locked at the mo-
ment of failure. Without lock intention logs, unlocking all
mutexes would require inspecting them all or using genera-
tional locks in the manner of NV-heaps [14]. The lock inten-
tion log enables both arbitrary mutex implementations and
fast recovery.

After unlocking all mutexes, recovery spawns one thread
per non-empty JUSTDO log; a recovery thread’s duty is to
execute to completion a corresponding FASE that had been
cut short by failure. Each recovery thread inherits a JUSTDO
log and the pair of lock logs left behind by its deceased
predecessor.

Recovery threads begin by acquiring all locks in their
respective lock ownership logs, then waiting at a barrier for
all other threads to do likewise. Once all locks have been
acquired by all recovery threads, each thread re-executes
the STORE instruction contained in its JUSTDO log. Finally,
each recovery thread jumps to the program counter value
contained in the JUSTDO log and continues execution of
the interrupted FASE. Recovery threads track the number of
mutexes they hold, and when this count drops to zero the
FASE has been completed and the thread exits.

Interestingly, recovery must be executed with an in-
terleaving of instructions (either in parallel or by context
switching across recovery threads): Some FASEs may be
blocked waiting for other FASEs to release mutexes. This
interleaving requirement is actually an advantage, because
our approach naturally supports parallel recovery. Further-
more, once our recovery threads have re-acquired all of
their locks and passed the barrier, access to shared persis-
tent state is properly synchronized by the appropriate mu-
texes. Consequently, the resurrected application may spawn
ordinary (non-recovery) threads that operate, with appro-
priate synchronization, upon persistent memory even before
our recovery threads have completed the execution of inter-
rupted FASEs. In other words, the restoration of consistency
to persistent memory can proceed in parallel with resumed
application execution. Section 7.3 presents recovery time
measurements of crashed processes that manipulated large
volumes of persistent data via JUSTDO logging.

Reasoning about the barrier employed by recovery makes
it easy to show that our approach tolerates failures during
recovery. No persistent memory state is altered before our
recovery threads reach the barrier, so a crash before this
point has no effect and recovery may simply be attempted
again. After our recovery threads pass the barrier, they ex-
ecute FASEs under the protection of JUSTDO logging, pre-
cisely as in an ordinary execution of the program.

433

6. Implementation
Our current JUSTDO logging prototype is a C++ library with
bindings for both C++ and C. Annotations for JUSTDO-
enabled FASEs are a straightforward, if tedious, transfor-
mation of transient (non-crash-resilient) code, somewhat
analogous to the annotations employed in software trans-
actional memory systems. We hope that future work, in-
tegrating compiler support, can automate nearly all of the
chores surrounding annotations while also providing addi-
tional type safety guarantees to ensure that the “persistent-
only accesses” rule is followed within FASEs. In the mean-
time, however, JUSTDO integration requires every possible
code path and access within a FASE to be identified and an-
notated at compile time, making JUSTDO integration signif-
icantly more complex than other failure atomicity systems.
Other systems, such as Atlas, do not need to know all possi-
ble FASE code paths at compile time. Compared with prior
FASE implementations, our current prototype deliberately
trades programmer convenience and generality for perfor-
mance.

Our library contains three major elements: the jd root,
the jd obj, and the JUSTDO routine. The first two are C++
classes and are entry points into our library. The JUSTDO
routine consolidates the boilerplate required to execute an
application-defined FASE under JUSTDO logging. The re-
mainder of this section illustrates the use of these elements
in a detailed example shown in Figures 4, 5, 6, and 7. Our ex-
ample code failure-atomically transfers money from acnt1

to acnt2; for clarity we omit type casts and the use of the
volatile keyword. Our example code shows the usage of
JUSTDO annotations and how to set up a JUSTDO FASE.

By definition, persistent memory outlives the processes
that access it. Therefore JUSTDO logging requires mecha-
nisms to enable newly created processes to locate persistent
memory containing data of interest and to make the data
accessible to application software. At a high level, we fol-
low the same straightforward approach taken by prior re-
search implementations of FASEs and by emerging indus-
try standards for persistent memory [38, 46]: A file system
(or the moral equivalent thereof) maps short, memorable,
human-readable strings (names) to long persistent byte se-
quences, and processes use an mmap-like interface to incor-
porate into their address spaces the persistent data thus lo-
cated. More specifically, our JUSTDO logging prototype uses
the Atlas [9] implementation of persistent memory regions,
which supports memory allocation methods nv malloc and
nv calloc and contains a header for its root pointer (ac-
cessed via Get/SetRegionRoot methods), as shown in our
example code.

6.1 jd root

The jd root object is the main entry point to the JUSTDO
library. This object is placed in a well-known location in

the persistent region that is accessible by recovery code via
GetRegionRoot.

The jd root is a global object and is the factory object
for jd objs, which are thread-local. The jd root maintains
a list of the jd objs that have been allocated to threads.

During recovery, the jd root object is responsible for
unlocking all mutexes and coordinating lock re-acquisitions
across recovery threads. Finally, it initiates thread-local re-
covery, in which recovery threads jump back into their re-
spective FASEs.

6.2 jd obj

The jd obj is a thread local object for executing a FASE un-
der JUSTDO logging. It contains both the JUSTDO log struc-
ture and its associated lock logs. jd obj exports methods
jd lock, jd store, and jd unlock; consequently most
lines within a JUSTDO FASE will touch the jd obj.

The jd obj also provides a handle to thread-local persis-
tent memory that is used to persist variables normally on the
stack; this handle facilitates compliance with the “persistent-
only access” rule of Section 5.2. In an exception to the
“persistent-only access” rule, each thread maintains a ref-
erence to its jd obj on the stack. Following a crash, this
reference is correctly re-set in each recovery thread. This
exception allows a recovery thread to share a reference to
its jd obj with its failed predecessor.

6.3 JUSTDO routine
A JUSTDO routine is a function containing a JUSTDO FASE.
Such functions have a defined prototype and are anno-
tated to enable recovery. During recovery, the JUSTDO
routine’s stack frame provides thread-local scratch space
that would be inconvenient to obtain otherwise. The an-
notations are illustrated in our example code at line 10 in
transfer justdo of Figure 5.

A JUSTDO routine complies with several annotation re-
quirements. It takes three arguments: a jd obj and two void
pointers for the arguments and return values. We also require
that the first line of the JUSTDO routine be a special macro:
JD ROUTINE ON ENTRY (line 12).

There are two ways to execute a JUSTDO routine, cor-
responding to normal (failure-free) execution and recovery.
During failure-free operation, invocation of a JUSTDO rou-
tine simply executes the function (and FASE) as written.

During recovery, however, the execution of a JUSTDO
routine is different. A recovery thread that has acquired mu-
texes as described in Section 5.5 invokes the JUSTDO rou-
tine, passing as an argument a reference to the the jd obj

that it inherits from its failed predecessor thread and NULL
for the remaining two arguments, args and rets. The
JD ROUTINE ON ENTRY macro in the JUSTDO routine deter-
mines from the jd obj that it is running in recovery mode
and uses the JUSTDO log within the jd obj to cause control
to jump to the last STORE within the FASE executed prior
to failure. When a recovery thread unlocks its last mutex, it

434

1 struct Root { int* accounts;

2 lock* locks;

3 jd_root* jdr; };

4 Root* rt;

5 struct Args { int acnt1,acnt2,amount; };

6 struct Returns { bool success; };

7 struct Locals { int acnt1, acnt2;

8 bool success; };

Figure 4. JUSTDO logging example (Globals)

knows that its assigned FASE has completed and therefore
it exits.

6.4 Recovery Implementation
Having introduced all library constructs and their design, we
can now summarize the entire recovery procedure:

1. The application detects a crash and invokes JUSTDO re-
covery via jd root.

2. The jd root resets all locks using the lock intention
logs.

3. The jd root spawns recovery threads for every active
jd obj.

4. Each recovery thread re-acquires locks using its lock
ownership logs in its jd obj, then barriers.

5. Following the barrier, the recovery threads invoke inter-
rupted JUSTDO routines with their inherited jd obj.

6. Each recovery thread uses the JD ROUTINE ON ENTRY

macro to jump to the program counter as indicated by
its JUSTDO log.

7. When a recovery thread’s lock count reaches zero, it
exits.

7. Experiments
In the current state of our prototype it is difficult to retrofit
JUSTDO logging onto large and complex real-world legacy
applications, so our evaluations employ small benchmarks.
We implemented five high-throughput concurrent data struc-
tures to evaluate the performance and recoverability of
JUSTDO logging. Each data structure is implemented in three
variants: a Transient (crash vulnerable) version, a JUSTDO
crash-resilient version, and a version fortified with the At-
las crash-resilience system [9]. The five algorithms are the
following:

Queue The two-lock queue implementation of Michael and
Scott [29].

Stack A locking variation on the Treiber Stack [49].

Priority Queue A sorted list traversed using hand-over-
hand locking. This implementation allows for concur-

9 // jd_routine for account transfer

10 void transfer_justdo(jd_obj* jdo,

11 void* args, void* rets){

12 JD_ROUTINE_ON_ENTRY(jdo);

13 // copy locals off the stack

14 jdo->set_locs<Locals>();

15 jdo->locs->acnt1 = args->acnt1;

16 jdo->locs->acnt2 = args->acnt2;

17 jdo->locs->amount = args->amount;

18 // begin FASE

19 jdo->jd_lock(

20 rt->locks[jdo->locs->acnt1]);

21 jdo->jd_lock(

22 rt->locks[jdo->locs->acnt2]);

23 // increment first account

24 jdo->jd_store(

25 &rt->accounts[jdo->locs->acnt1],

26 rt->accounts[jdo->locs->acnt1] +

27 jdo->locs->amount);

28 // decrement second account

29 jdo->jd_store(

30 &rt->accounts[jdo->locs->acnt2],

31 rt->accounts[jdo->locs->acnt2] -

32 jdo->locs->amount);

33 // end FASE

34 jdo->jd_unlock(

35 rt->locks[jdo->locs->acnt1]);

36 jdo->jd_unlock(

37 rt->locks[jdo->locs->acnt2]);

38 // outside FASE, can access transient

39 rets->success = true;

40 }

Figure 5. JUSTDO logging example (JUSTDO Routine)

rent accesses within the list, but threads cannot pass one
another.

Map A fixed-size hash map that uses the sorted-list prior-
ity queue implementation for each bucket, obviating the
need for per-bucket locks.

Vector An array-based resizable vector in the style of the
contiguous storage solution proposed by Dechev et al. [17].
This algorithm supports lookups and updates during re-
sizing.

The queue and stack are lock-based implementations of al-
gorithms in the java.util.concurrent library. The vec-
tor’s design allows it to exploit atomic STORE instructions,
and our transient and JUSTDO versions of the vector take
advantage of this feature. Atlas supports only mutex-based
synchronization and consequently our Atlas version of the
vector uses a reader-writer lock instead, which incurs a non-
negligible performance overhead. In all other respects, the

435

41 int main(){

42 int rid =

43 LoadPersistentRegion("my_region");

44 rt = GetRegionRoot(rid);

45 // initialize our root if needed

46 if(rt == NULL) {

47 rt = nv_malloc(sizeof(Root),rid);

48 rt->accounts =

49 nv_calloc(sizeof(int),N_ACCTS,rid);

50 rt->locks =

51 nv_calloc(sizeof(lock),N_ACCTS,rid);

52 rt->jdr =

53 nv_malloc(sizeof(jd_root),rid);

54 new(rt->jdr) justdo_root(jdr);

55 SetRegionRoot(rt,rid);

56 }

57 // otherwise recover if needed

58 else{rt->jdr->recover();}

59 // get a thread local jd_obj

60 jd_obj* jdo = rt->jdr->new_jd_obj();

61 // conduct transfer

62 Args args;

63 args.acnt1 = 3; // arguments passed

64 args.acnt2 = 5; // into FASE

65 args.amount = 50; // via jd_routine

66 Returns rets;

67 transfer_justdo(jdo,args,rets);

68 // delete jd_obj

69 rt->jdr->delete_jd_obj(jdo);

70 }

Figure 6. JUSTDO logging example (main)

71 // The equivalent transient routine

72 bool transfer_transient(int acnt1,

73 int acnt2, int amount){

74 lock(rt->locks[acnt1]);

75 lock(rt->locks[acnt2]);

76 accounts[acnt1] += amount;

77 accounts[acnt2] -= amount;

78 unlock(rt->locks[acnt1]);

79 unlock(rt->locks[acnt2]);

80 return true;

81 }

Figure 7. JUSTDO logging example (equivalent transient
routine)

three versions of each of our five data structures differ only
in the implementation—or non-implementation—of crash
resilience.

Note that our implementations of these data structures
admit parallelism to varying degrees. Our stack, for exam-
ple, serializes accesses in a very small critical section. At
the other extreme, our hash map admits parallel accesses
both across and within buckets. We therefore expect low-
parallelism data structures to scale poorly with worker thread
count whereas high-parallelism data structures should ex-
hibit nearly linear performance scaling.

7.1 Correctness Verification
Conventional hardware suffices for the purposes of veri-
fying the crash-resilience guarantees of JUSTDO logging
because both conventional CPU caches and conventional
DRAM main memory can be persistent with respect to pro-
cess crashes: Specifically, STOREs to a file-backed memory
mapping are required by POSIX to be “kernel persistent,”
meaning that such STOREs are guaranteed to outlive the pro-
cess that issued them; neither msync nor any other measures
are required after a STORE to obtain this guarantee [33].

To test JUSTDO recovery we installed a 128 GB JUSTDO-
fortified hash map in a file-backed memory mapping on
a server-class machine (described in more detail in Sec-
tion 7.2). After building the hash table, we used all sixty
of the server’s hardware threads to perform inserts and re-
moves in equal proportion on random keys in the hash ta-
ble. Our hash buckets are implemented as sorted linked lists,
so corruption (if present) will manifest as dangling pointers
within a bucket, resulting in a segmentation fault or assertion
failure. At intervals of two seconds, we killed the threads us-
ing an external SIGKILL. On restarting the process, we per-
formed JUSTDO recovery before continuing execution. This
test was conducted for approximately four hours. We con-
structed similar tests for each of our other four concurrent
data structures; these additional tests also injected crashes
every two seconds and ran for over twelve hours. No incon-
sistencies or corruption occurred.

7.2 Performance Evaluation
The goal of our performance evaluation is to estimate the
overhead of JUSTDO crash resilience compared with high-
performance transient (crash-vulnerable) versions of the
same concurrent algorithms. We took care to ensure that
the transient versions of our five algorithms exhibit quite
good performance; these versions provide reasonable per-
formance baselines. For example, running on newer hard-
ware, our transient hash map achieves per-core throughput
approaching published results on the state-of-the-art MICA
concurrent hash table [25].

Our results are conservative/pessimistic in the sense that
our experiments involve small data-intensive microbench-
marks that magnify the overheads of crash resilience to the
greatest possible extent. In real applications, concurrent ac-

436

cesses to shared persistent data structures might not be a per-
formance bottleneck, and therefore by Amdahl’s law [2] the
overheads of any crash resilience mechanism would likely
be smaller. This effect is shown in Section 7.4, where the
overhead of initializing large data values eliminates the over-
head of persistence.

Our tests consist of microbenchmarks with a varying
number of worker threads. Tests are run for a fixed time
interval using a low overhead hardware timer, and total op-
erations are aggregated at the end. For the duration of mi-
crobenchmark execution, each thread repeatedly chooses a
random operation to execute on the structure. Unless stated
otherwise (see Section 7.4), keys and values are eight-byte
integers, are generated in transient memory, and are copied
into persistent memory upon entry into a FASE. For our
evaluations of queues, stacks, and priority queues, threads
choose randomly between insert or remove; these three
data structures were sized such that most accesses were
served from the CPU caches. Therefore performance for
our stack and queues is limited by synchronization.

Our vector and map evaluations drew inspiration from the
standard YCSB benchmark [57]. For vectors and maps, the
containers are filled to 80% of the key range, then we per-
form overwrite operations for random keys in the range.
The overwrite operation replaces the value only if it exists,
but otherwise does not modify the data structure. We sized
our vectors and maps so that the vast majority of these two
structures did not fit in the CPU caches; keys for accesses
were drawn randomly from a uniform distribution. Most ac-
cesses miss in the CPU caches, therefore our vector and map
are limited by memory performance.

During each test, threads synchronize only through the
tested data structure. To smooth performance curves, pages
are prefaulted to prevent soft page faults. For data structures
with high memory allocator usage (all except the vector),
we implemented a simple thread-local bump pointer block
pool to prevent bottlenecking on malloc and to minimize
the impact of Atlas’s custom memory allocator, which tends
to underperform at high thread counts. Variables within the
data structures are appropriately padded to prevent false
sharing. To generate random numbers, threads use thread-
local generators to avoid contention.

Software threads for all experiments are pinned to spe-
cific hardware threads. Our thread pinning progression fills
all cores of a socket first, then fills the corresponding hy-
perthreads. Once all cores and hyperthreads are filled, we
add additional sockets, filling them in the same order. For
all machines, we ran every experimental configuration five
times and took the average.

Compilation for the transient and JUSTDO data structures
was done using gcc 4.8.4 with the -O3 flag. Atlas structures
were compiled using the clang and llvm-based Atlas com-
piler, again with the -O3 flag set.

“Persistent Cache” Machines We conducted performance
tests on three machines. The first is a single-socket worksta-
tion with an Intel Core i7-4770 CPU running at 3.40 GHz.
The CPU has four two-way hyperthreaded cores (eight hard-
ware threads). It has a shared 8 MB L3 cache, with per-core
private L2 and L1 caches, 256 KB and 32 KB respectively.
The workstation runs Ubuntu 12.04.5 LTS.

Our second machine is a server with four Intel Xeon E7-
4890 v2 sockets, each of which has 15 cores (60 hardware
threads total). The machine has 3 TB of main memory, with
37.5 MB per-socket L3 caches. L2 and L1 caches are private
per core, 256 KB and 32 KB respectively. The server and the
workstation are used to mimic machines that implement per-
sistent memory using supercapacitor-backed DRAM (e.g.,
Viking NVDIMMs [51]) and supercapacitor-backed SRAM.

Figures 8 and 9 show aggregate operation throughput as
a function of worker thread count for all three versions of
our data structures—transient, JUSTDO-fortified, and Atlas-
fortified. Our results show that on both the workstation and
the server, JUSTDO logging outperforms Atlas for every data
structure and nearly all thread counts. JUSTDO performance
ranges from three to one hundred times faster than Atlas.
JUSTDO logging furthermore achieves between 33% and
75% of the throughput of the transient (crash-vulnerable)
versions of each data structure. For data structures that are
naturally parallel (vector and hash map), the transient and
JUSTDO implementations scale with the number of threads.
In contrast, Atlas does not scale well for our vectors and
maps. This inefficiency is a product of Atlas’s dependency
tracking between FASEs, which creates a synchronization
bottleneck in the presence of large numbers of locks.

Future NVM-based main memories that employ PCM
or resistive RAM are expected to be slower than DRAM,
and thus the ratio of memory speed to CPU speed is likely
to be lower on such systems. We therefore investigate
whether changes to memory speed degrade the performance
of JUSTDO logging. Since commodity PCM and resistive
RAM chips are not currently available, we investigate the
implications of changing memory speed by under-clocking
and over-clocking DRAM. For these experiments we use a
third machine, a single-socket workstation with a four-core
(two-way hyperthreaded) Intel i7-4770K system running at
3.5 GHz with 32 KB, 256 KB private L1 and L2 caches per
core and one shared 8 MB L3 cache. We use 32 GBs of
G.SKILLs TridentX DDR3 DRAM operating at frequencies
of 800, 1333 (default), 2000, and 2400 MHz.

For our tests involving small data structures (queue, stack,
and priority queue), the performance impact of changing
memory speed was negligible (under 1% change)—which
is not surprising because by design these entire data struc-
tures fit in the L3 cache. For our tests involving larger data
structures deliberately sized to be far larger than our CPU
caches and accessed randomly (map and vector), we find
that the ratio of transient (crash-vulnerable) throughput to

437

1

10

4 8 12 16
Threads

T
h
ro

u
g
h
p
u
t
(M

 o
p
s
/s

e
c
)

TransientQueue
TransientStack
JustDoQueue
JustDoStack
AtlasQueue
AtlasStack

XXXXX

XXXXX

XXXXX

XXXXX XXXXX

XXXXX

XXXXX
XXXXX

XXXXX
XXXXX XXXXX XXXXX

XXXXX
XXXXX XXXXX XXXXX

XXXXX

XXXXX

XXXXX

XXXXX XXXXX
XXXXX

XXXXX
XXXXX

XXXXX
XXXXX XXXXX XXXXX

XXXXX XXXXX
XXXXX XXXXX

XXXXX

XXXXX

XXXXX
XXXXX XXXXX XXXXX

XXXXX

XXXXX

XXXXX
XXXXX XXXXX

XXXXX
XXXXX

XXXXX
XXXXX XXXXX

1

10

100

4 8 12 16
Threads

T
h
ro

u
g
h
p
u
t
(M

 o
p
s
/s

e
c
)

X

X

X

TransientVector
TransientMap
JustDoVector
JustDoMap
AtlasVector
AtlasMap

0.01

0.10

4 8 12 16
Threads

T
h
ro

u
g
h
p
u
t
(M

 o
p
s
/s

e
c
)

TransientPQueue
JustDoPQueue
AtlasPQueue

Figure 8. Throughput on workstation (log scale)

1

10

0 25 50 75 100 125
Threads

T
h
ro

u
g
h
p
u
t
(M

 o
p
s
/s

e
c
)

TransientQueue
TransientStack
JustDoQueue
JustDoStack
AtlasQueue
AtlasStack

XXXXX

XXXXX

XXXXX

XXXXX

XXXXX
XXXXX

XXXXX XXXXX XXXXX

XXXXX XXXXX
XXXXX XXXXX XXXXX XXXXX XXXXX

XXXXX
XXXXX XXXXX XXXXX XXXXX XXXXX XXXXX

XXXXX XXXXX XXXXX

XXXXX

XXXXXXXXXX
XXXXX

XXXXX
XXXXX

XXXXX
XXXXX XXXXX

XXXXX
XXXXXXXXXX XXXXX

XXXXX XXXXX
XXXXX XXXXX XXXXX

XXXXX XXXXX
XXXXX XXXXX XXXXX XXXXX XXXXX XXXXX

XXXXX

XXXXXXXXXX

XXXXXXXXXX

XXXXX

XXXXX XXXXX XXXXX XXXXX XXXXXXXXXX XXXXX XXXXX XXXXX XXXXX
XXXXX

XXXXX XXXXX XXXXX XXXXX XXXXX XXXXX XXXXX XXXXX XXXXX

1

100

0 25 50 75 100 125
Threads

T
h
ro

u
g
h
p
u
t
(M

 o
p
s
/s

e
c
)

X

X

X

TransientVector
TransientMap
JustDoVector
JustDoMap
AtlasVector
AtlasMap

0.01

0.10

0 25 50 75 100 125
Threads

T
h
ro

u
g
h
p
u
t
(M

 o
p
s
/s

e
c
)

TransientPQueue
JustDoPQueue
AtlasPQueue

Figure 9. Throughput on server (log scale)

JUSTDO logging throughput remains constant (between 1.93
and 2.00) as memory speed varies over a 3× range. Varying
memory speed does not change the overhead of of JUSTDO
logging.

“Transient Cache” Machines To investigate how JUSTDO
logging will likely perform on machines without persistent
caches, but with persistent main memory, we modified our
JUSTDO library to use the synchronous CLFLUSH instruction
to push STOREs within FASEs toward persistent memory.
This x86 instruction invalidates and writes back a cache
line, blocking the thread until it completes. While Intel has
announced faster flushing mechanisms in future ISAs [41],
this instruction is the only method on existing hardware. Our
CLFLUSH-ing version uses the CLFLUSH instruction where
before it used only a release fence, forcing dirty data back
to persistent storage in a consistent order.

We performed CLFLUSH experiments on our i7-4770
workstation and compared with Atlas’s “flush-as-you-go”
mode, which also makes liberal use of CLFLUSH in the same
way (see Figure 10). As expected, JUSTDO logging takes
a serious performance hit when it uses CLFLUSH after every
STORE in a FASE, since the reduced computational overhead
of our technique is overshadowed by the more expensive
flushing cost. Furthermore, the advantage of a JUSTDO log

that fits in a single cache line is negated because the log is re-
peatedly invalidated and forced out of the cache. The cache
line invalidation causes a massive performance hit. For the
JUSTDO map using four worker threads, the L3 cache miss
ratio increases from 5.5% to 80% when we switch from re-
lease fences to CLFLUSHes. We expect that the new Intel
instruction CLWB, which drains the cache line back to mem-
ory but does not invalidate it, will significantly improve our
performance in this scenario when it becomes available.

In contrast to JUSTDO logging, Atlas’s additional sophis-
tication pays off here, since it can buffer writes back to mem-
ory and consolidate flushes to the same cache line. Atlas out-
performs the JUSTDO variants by 2–3× across our tested pa-
rameters on “transient cache” machines.

7.3 Recovery Speed
In our correctness verification test (Section 7.1), which
churned sixty threads on a 128 GB hash table, we also
recorded recovery time. After recovery process start-up, we
spend on average 2000 microseconds to mmap the large hash
table back into the virtual address space of the recovery pro-
cess. Reading the root pointer takes an additional microsec-
ond. To check if recovery is necessary takes 64 microsec-
onds. In our tests, an average of 24 FASEs were interrupted
by failure, so 24 threads needed to be recovered. It took

438

0.2

0.4

0.6

0.8

4 8 12 16
Threads

T
h
ro

u
g
h
p
u
t
(M

 o
p
s
/s

e
c
)

AtlasQueue
AtlasStack
JustDoQueue
JustDoStack

XXXXX

XXXXX

XXXXX

XXXXX

XXXXX

XXXXX

XXXXX

XXXXX

XXXXX XXXXX XXXXX
XXXXX XXXXX

XXXXX XXXXX
XXXXX

XXXXX

XXXXX

XXXXX

XXXXX

XXXXX

XXXXX

XXXXX

XXXXX

XXXXX
XXXXX XXXXX

XXXXX XXXXX
XXXXX

XXXXX XXXXX

1

2

3

4 8 12 16
Threads

T
h
ro

u
g
h
p
u
t
(M

 o
p
s
/s

e
c
)

X

X

AtlasVector
AtlasMap
JustDoVector
JustDoMap

2.5 × 10
−3

5 × 10
−3

7.5 × 10
−3

1 × 10
−2

4 8 12 16
Threads

T
h
ro

u
g
h
p
u
t
(M

 o
p
s
/s

e
c
)

AtlasPQueue
JustDoPQueue

Figure 10. Throughput on workstation using CLFLUSH (linear scale)

on average 2700 microseconds for all recovery threads to
launch, complete their FASEs in parallel, and terminate. (To
put these numbers in perspective, during failure-free execu-
tion a FASE in these tests took on the order of one microsec-
ond.) From start to finish, recovering a 128 GB hash table
takes under 5 ms.

7.4 Data Size

XX XX XX XX XX XX XX XX XX

XX

XX XX
XX

XX

XX XX
XX

XX

XX
XX

XX

XX

XX

XX

XX

XX

XX

10

20

30

40

10 1000
Value Size (bytes)

T
h

ro
u

g
h

p
u

t
(M

 o
p

s
/s

e
c
)

X

X

X

TransientMap
JustDoMap
AtlasMap

Figure 11. Throughput on server as a function of value size
(linear scale)

Figure 11 shows throughput as a function of data size
on the various key-value (hash map) implementations. Tests
were run on the server machine with eight threads, assume a
persistent cache, and vary value sizes from a single byte to
one kilobyte. For each operation, values were created and
initialized with random contents by the operating thread;
the Atlas and JUSTDO variants allocate and initialize data
in persistent memory. Allocation and initialization quickly
become bottlenecks for the transient implementation. The
JUSTDO implementation is less sensitive to data size, since it
operates at a slower speed, and value initialization does not
begin to affect throughput until around half a kilobyte. At
one kilobyte, the allocation and initialization of the data val-
ues becomes the bottleneck for both implementations, mean-
ing the overhead for persistence is effectively zero beyond
this data size. In contrast to the transient and JUSTDO im-

plementations, the Atlas implementation is nearly unaffected
by data size changes: Atlas’s bottleneck remains dependency
tracking between FASEs.

Note that only Atlas copies the entire data value into a
log; in the case of a crash between initialization of a data
value and its insertion, Atlas may need to roll back the
data’s initial values. In contrast, JUSTDO logging relies on
the fact that the data value resides in persistent memory.
After verifying that the data is indeed persistent, the JUSTDO
map inserts a pointer to the data. The “precopy” of JUSTDO
copies only the value’s pointer off the stack into persistent
memory. Consequently, it is affected by data size only as
allocation and initialization become a larger part of overall
execution. Obviously, the transient version never copies the
data value as it is not failure-resilient.

8. Conclusions
We have shown that JUSTDO logging provides a useful
new way to implement failure-atomic sections. Compared
with persistent memory transaction systems and other exist-
ing mechanisms for implementing FASEs, JUSTDO logging
greatly simplifies log maintenance, thereby reducing per-
formance overheads significantly. Our crash-injection tests
confirm that JUSTDO logging preserves the consistency of
application data in the face of sudden failures. Our perfor-
mance results show that JUSTDO logging effectively lever-
ages persistent caches to improve performance substantially
compared with a state-of-the-art FASE implementation.

Acknowledgments
This work was partially supported by the U.S. Department
of Energy under Award Number DE-SC-0012199. We thank
Dhruva Chakrabarti, Adam Izraelevitz, Harumi Kuno, Mark
Lillibridge, Brad Morrey, Faisal Nawab, Michael Scott, Joe
Tucek, the ASPLOS reviewers, and our shepherd Mike Swift
for suggestions that greatly improved our paper.

439

References
[1] Sarita V. Adve and Kourosh Gharachorloo. “Shared Memory

Consistency Models: A Tutorial.” In IEEE Computer, Vol. 29
No. 12, December 1996.

[2] Gene M. Amdahl. “Validity of the Single Processor Approach
to Achieving Large Scale Computing Capabilities.” In Spring
Joint Computer Conference, 1967.

[3] Dmytro Apalkov, Alexey Khvalkovskiy, Steven Watts,
Valdimir Nikitin, Xueti Tang, Daniel Lottis, Kiseok Moon,
Xiao Luo, Eugene Chen, Adrian Ong, Alexander Driskill-
Smith, and Mohamad Krounbi. “Spin-transfer Torque
Magnetic Random Access Memory (STT-MRAM).” In
Journal on Emerging Technologies in Computing Systems
(JETC)—Special issue on memory technologies, 2013.

[4] Brian N. Bershad. “Fast Mutual Exclusion for Uniprocessors.”
In International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS),
1992.

[5] Kumud Bhandari, Dhruva R. Chakrabarti, and Hans-J.
Boehm. “Implications of CPU Caching on Byte-addressable
Non-Volatile Memory Programming.” Technical report HPL-
2012-236, Hewlett-Packard, 2012.

[6] Aviv Blattner, Ram Dagan, and Terence Kelly. “Generic
Crash-Resilient Storage for Indigo and Beyond.” Technical
report HPL-2013-75, Hewlett-Packard, 2013. http://www.
labs.hp.com/techreports/2013/HPL-2013-75.pdf

[7] Cristian Cadar, Daniel Dunbar, and Dawson Engler. “KLEE:
Unassisted and Automatic Generation of High-Coverage Tests
for Complex Systems Programs.” In Symposium on Operating
Systems Design and Implementation (OSDI), 2008.

[8] Cristian Cadar, Vijay Ganesh, Peter M. Pawlowski, David
L. Dill, and Dawson R. Engler. “EXE: Automatically
Generating Inputs of Death.” In Conference on Computer
and Communications Security (CCS), 2006.

[9] Dhruva R. Chakrabarti, Hans-J. Boehm, and Kumud Bhan-
dari. “Atlas: Leveraging Locks for Non-Volatile Memory
Consistency.” In International Conference on Object Ori-
ented Programming Systems Languages and Applications
(OOPSLA), 2014.

[10] Peter M. Chen, Wee Teck Ng, Subhachandra Chandra,
Christopher Aycock, Gurushankar Rajamani, and David E.
Lowell. “The Rio File Cache: Surviving Operating System
Crashes.” In International Conference on Architectural
Support for Programming Languages and Operating Systems
(ASPLOS), 1996.

[11] Shimin Chen, Phillip B. Gibbons, and Suman Nath. “Re-
thinking Database Algorithms for Phase Change Memory.”
In Biennial Conference on Innovative Data Systems Research
(CIDR), 2011.

[12] David Chisnall, Colin Rothwell, Robert N.M. Watson,
Jonathan Woodruff, Munraj Vadera, Simon W. Moore,
Michael Roe, Brooks Davis, and Peter G. Neumann. “Beyond
the PDP-11: Processor support for a memory-safe C abstract
machine.” In International Conference on Architectural
Support for Programming Languages and Operating Systems
(ASPLOS). 2015.

[13] Joel Coburn, Trevor Bunker, Meir Schwarz, Rajesh Gupta,
and Steven Swanson. “From ARIES to MARS: Transaction
Support for Next-Generation, Solid-State Drives.” In
Symposium on Operating Systems Principles (SOSP), 2013.

[14] Joel Coburn, Adrian M. Caulfield, Ameen Akel, Laura M.
Grupp, Rajesh K. Gupta, Ranjit Jhala, and Steven Swanson.
“NV-Heaps: Making Persistent Objects Fast and Safe with
Next-Generation, Non-volatile Memories.” In International
Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2011.

[15] Jeremy Condit, Edmund B. Nightingale, Christopher Frost,
Engin Ipek, Benjamin Lee, Doug Burger, and Derrick
Coetzee. “Better I/O Through Byte-addressable, Persistent
Memory.” In Symposium on Operating Systems Principles
(SOSP), 2009.

[16] Intel Corporation. “Intel Architecture Instruction Set
Extensions Programming Reference.” No. 319433-023,
October 2014.

[17] Damian Dechev, Peter Pirkelbauer, and Bjarne Stroustrup.
“Lock-free Dynamically Resizable Arrays.” In International
Conference on Principles of Distributed Systems (OPODIS),
2006.

[18] Subramanya R. Dulloor, Sanjay Kumar, Anil Keshavamurthy,
Philip Lantz, Dheeraj Reddy, Rajesh Sankaran, and Jeff
Jackson. “System Software for Persistent Memory.” In
European Conference on Computer Systems (EuroSys), 2014.

[19] Patrice Godefroid, Nils Klarlund, and Koushik Sen. “DART:
Directed Automated Random Testing.” In Conference on
Programming Language Design and Implementation (PLDI),
2015.

[20] Jian Huang, Karsten Schwan, and Moinuddin K. Qureshi.
“NVRAM-aware Logging in Transaction Systems.” In
Proceedings of the VLDB Endowment, 2014.

[21] Marc de Krujf and Karthikeyan Sankaralingam. “Idempotent
Processor Architecture.” In International Symposium on
Microarchitecture (MICRO), 2011.

[22] Emre Kultursay, Mahmut Kandemir, Anand Sivasubrama-
niam, and Onur Mutlu. “Evaluating STT-RAM as an Energy-
Efficient Main Memory Alternative.” In International Sym-
posium on Performance Analysis of Systems and Software
(ISPASS), 2013.

[23] Benjamin C. Lee, Engin Ipek, Onur Mutlu, and Doug Burger.
“Architecting Phase Change Memory As a Scalable DRAM
Alternative.” In International Symposium on Computer
Architecture (ISCA), 2009.

[24] Eunji Lee, Hyokyung Bahn, and Sam H. Noh. “Unioning
of the Buffer Cache and Journaling Layers with Non-volatile
Memory.” In Conference on File and Storage Technologies
(FAST), 2013.

[25] Hyeontaek Lim, Dongsu Han, David G. Andersen, and
Michael Kaminsky. “MICA: A Holistic Approach to Fast
In-Memory Key-value Storage.” In Conference on Networked
Systems Design and Implementation (NSDI), 2014.

[26] Raymond Lo, Fred Chow, Robert Kennedy, Shin-Ming
Liu, and Peng Tu. “Register Promotion by Sparse Partial
Redundancy Elimination of Loads and Stores.” In Conference

440

http://www.labs.hp.com/techreports/2013/HPL-2013-75.pdf
http://www.labs.hp.com/techreports/2013/HPL-2013-75.pdf

on Programming Language Design and Implementation
(PLDI), 1998.

[27] David E. Lowell and Peter M. Chen. “Free transactions with
Rio Vista.” In Symposium on Operating Systems Principles
(SOSP), 1997.

[28] Youyou Lu, Jiwu Shu, Long Sun, and Onur Mutlu. “Loose-
Ordering Consistency for Persistent Memory.” In Interna-
tional Conference on Computer Design (ICCD), 2014.

[29] Maged M. Michael and Michael L. Scott. “Simple, Fast,
and Practical Non-Blocking and Blocking Concurrent Queue
Algorithms.” In Symposium on Principles of Distributed
Computing (PODC), 1996.

[30] Microsoft Developer Network. “Alternative to using Trans-
actional NTFS.” http://msdn.microsoft.com/en-us/

library/hh802690.aspx, Accessed 17 September 2014.

[31] C. Mohan, Don Haderle, Bruce Lindsay, Hamid Pirahesh, and
Peter Schwarz. “ARIES: A Transaction Recovery Method
Supporting Fine-granularity Locking and Partial Rollbacks
Using Write-ahead Logging.” In ACM Transactions on
Database Systems, Vol. 17 No. 1, March 1992.

[32] Dushyanth Narayan and Orion Hodson. “Whole-System
Persistence.” In International Conference on Architectural
Support for Programming Languages and Operating Systems
(ASPLOS), 2012.

[33] Faisal Nawab, Dhruva R. Chakrabarti, Terence Kelly, and
Charles B. Morrey III. “Procrastination Beats Prevention:
Timely Sufficient Persistence for Efficient Crash Resilience.”
In International Conference on Extending Database Technol-
ogy (EDBT), 2015. http://openproceedings.org/2015/
conf/edbt/paper-336.pdf

[34] Faisal Nawab, Dhruva R. Chakrabarti. Terence Kelly,
and Charles B. Morrey III “Zero-Overhead NVM
Crash Resilience.” In Non-Volatile Memories Workshop
(NVMW), 2015. http://nvmw.ucsd.edu/2015/assets/

abstracts/41

[35] Micheal A. Olson, Keith Bostic, and Margo Seltzer. “Berkeley
DB.” In USENIX Annual Technical Conference (FREENIX
track), 1999.

[36] Stan Park, Terence Kelly, and Kai Shen. “Failure-Atomic
msync(): A Simple and Efficient Mechanism for Preserving
the Integrity of Durable Data.” In European Conference on
Computer Systems (EuroSys), 2013. http://doi.acm.org/
10.1145/2465351.2465374

[37] Steven Pelley, Peter M. Chen, and Thomas F. Wenisch.
“Memory Persistency.” In International Symposium on
Computer Architecture (ISCA), 2014. http://dl.acm.

org/citation.cfm?id=2665671.2665712

[38] “Persistent Memory Programming.” http://pmem.io/,
Accessed 12 August 2015.

[39] Donald E. Porter, Owen S. Hofmann, Christopher J. Ross-
bach, Alexander Benn, and Emmett Witchel. “Operating
System Transactions.” In Symposium on Operating Systems
Principles (SOSP), 2009.

[40] Moinuddin K. Qureshi, Vijayalakshmi Srinivasan, and Jude
A. Rivers. “Scalable High Performance Main Memory System

Using Phase-change Memory Technology.” In International
Symposium on Computer Architecture (ISCA), 2009.

[41] Andy Rudoff. “In a World with Persistent Memory.” In
Non-Volatile Memories Workshop (NVMW), 2015.

[42] Leonid Ryzhyk, Peter Chubb, Ihor Kuz, Etienne Le Sueur,
and Gernot Heiser. “Automatic Device Driver Synthesis with
Termite.” In Symposium on Operating Systems Principles
(SOSP), 2009.

[43] A.V.S. Sastry and Roy D.C. Ju. “A New Algorithm for Scalar
Register Promotion Based on SSA Form.” In Conference on
Programming Language Design and Implementation (PLDI),
1998.

[44] Russell Sears and Eric Brewer. “Stasis: Flexible Transactional
Storage.” In Symposium on Operating Systems Design and
Implementation (SOSP), 2006.

[45] SQLite http://www.sqlite.org/, Accessed 15 January
2016.

[46] “Storage Networking Industry Association (SNIA) Non-
Volatile Memory Programming Model.” http://www.snia.

org/tech_activities/standards/curr_standards/

npm, Accessed 10 January 2016.

[47] Richard P. Spillane, Sachin Gaikwad, Manjunath Chinni, Erez
Zadok, and Charles P. Wright. “Enabling Transactional File
Access via Lightweight Kernel Extensions.” In Conference
on File and Storage Technologies (FAST), 2009.

[48] Dmitri B. Strukov, Gregory S. Snider, Duncan R. Stewart,
and R. Stanley Williams. “The missing memristor found.” In
Nature, Vol. 453 No. 7191, May 2008.

[49] R. Kent Treiber. “Systems Programming: Coping with
Parallelism.” Technical Report RJ 5118, IBM Almaden
Research Center, 1986.

[50] Rajat Verma, Anton Ajay Mendez, Stan Park, Sandya
Mannarswamy, Terence Kelly, and Charles B. Morrey III.
“Failure-Atomic Updates of Application Data in a Linux
File System.” In Conference on File and Storage Technolo-
gies (FAST), 2015. https://www.usenix.org/system/

files/conference/fast15/fast15-paper-verma.pdf

[51] Viking Technology. “NVDIMM Technology:
ArxCis-NV.” http://www.vikingtechnology.com/

nvdimm-technology, Accessed 10 August 2015.

[52] Haris Volos, Andres Jaan Tack, and Micheal M. Swift.
“Mnemosyne: Lightweight Persistent Memory.” In Interna-
tional Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2011.

[53] Tianzheng Wang and Ryan Johnson. “Scalable Logging
through Emerging Non-Volatile Memory.” In Proceedings of
the VLDB Endowment, 2014.

[54] Jonathan Woodruff, Robert N. M. Watson, David Chisnall,
Simon W. Moore, Jonathan Anderson, Brooks Davis, Ben
Laurie, Peter G. Neumann, Robert Norton, and Michael Roe.
“The CHERI capability model: Revisiting RISC in an age of
risk.” In International Symposium on Computer Architecture
(ISCA), 2014.

[55] Micheal Wu and Willy Zwaenepoel. “eNVy: A Non-Volatile,
Main Memory Storage System.” In International Conference

441

http://msdn.microsoft.com/en-us/library/hh802690.aspx
http://msdn.microsoft.com/en-us/library/hh802690.aspx
http://openproceedings.org/2015/conf/edbt/paper-336.pdf
http://openproceedings.org/2015/conf/edbt/paper-336.pdf
http://nvmw.ucsd.edu/2015/assets/abstracts/41
http://nvmw.ucsd.edu/2015/assets/abstracts/41
http://doi.acm.org/10.1145/2465351.2465374
http://doi.acm.org/10.1145/2465351.2465374
http://dl.acm.org/citation.cfm?id=2665671.2665712
http://dl.acm.org/citation.cfm?id=2665671.2665712
http://pmem.io/
http://www.sqlite.org/
http://www.snia.org/tech_activities/standards/curr_standards/npm
http://www.snia.org/tech_activities/standards/curr_standards/npm
http://www.snia.org/tech_activities/standards/curr_standards/npm
https://www.usenix.org/system/files/conference/fast15/fast15-paper-verma.pdf
https://www.usenix.org/system/files/conference/fast15/fast15-paper-verma.pdf
http://www.vikingtechnology.com/nvdimm-technology
http://www.vikingtechnology.com/nvdimm-technology

on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 1994.

[56] Cong Xu, Dimin Niu, Naveen Muralimanohar, Rajeev
Balasubramonian, Tao Zhang, Shimeng Yu, and Yuan Xie.
“Overcoming the challenges of crossbar resistive memory
architectures.” In Symposium on High Performance Computer
Architecture (HPCA), 2015.

[57] “Yahoo! Cloud Serving Benchmark (YCSB).” https://

github.com/brianfrankcooper/YCSB/wiki, Accessed 4
August 2015.

[58] Jun Yang, Qingsong Wei, Cheng Chen, Chundong Wang,
Khai Leong Yong, and Bingsheng He. “NV-Tree: Reducing
Consistency Cost for NVM-based Single Level Systems.” In
Conference on File and Storage Technologies (FAST), 2015.

[59] Sunghwan Yoo, Charles Killian, Terence Kelly, Hyoun Kyu
Cho, and Steven Plite. “Composable Reliability for Asyn-
chronous Systems.” In USENIX Annual Technical Conference
(ATC), 2012. https://www.usenix.org/system/files/
conference/atc12/atc12-final206-7-20-12.pdf

[60] Anna Zaks and Rajeev Joshi. “Verifying Multi-threaded C
Programs with SPIN.” Model Checking Software. Springer
Berlin Heidelberg, 2008.

[61] Jishen Zhao, Sheng Li, Doe Hyun Lee, Yuan Xie, and
Norman P. Jouppi. “Kiln: Closing the Performance Gap
Between Systems With and Without Persistence Support.”
In International Symposium on Microarchitecture (MICRO),
2013.

442

https://github.com/brianfrankcooper/YCSB/wiki
https://github.com/brianfrankcooper/YCSB/wiki
https://www.usenix.org/system/files/conference/atc12/atc12-final206-7-20-12.pdf
https://www.usenix.org/system/files/conference/atc12/atc12-final206-7-20-12.pdf

	Introduction
	Concepts & Terminology
	Related Work
	System Model & Programming Model
	Design
	JUSTDO Log
	Persistent-Only Accesses
	Register Promotion in FASEs
	Lock Logs
	Recovery

	Implementation
	jd_root
	jd_obj
	justdo routine
	Recovery Implementation

	Experiments
	Correctness Verification
	Performance Evaluation
	Recovery Speed
	Data Size

	Conclusions

